On Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization

被引:26
|
作者
Chugh, Tinkle [1 ]
Sindhya, Karthik [1 ]
Miettinen, Kaisa [1 ]
Hakanen, Jussi [1 ]
Jin, Yaochu [1 ,2 ]
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, POB 35 Agora, FI-40014 Jyvaskyla, Finland
[2] Univ Surrey, Dept Comp Sci, Guildford, Surrey, England
关键词
D O I
10.1007/978-3-319-45823-6_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surrogate-assisted evolutionary multiobjective optimization algorithms are often used to solve computationally expensive problems. But their efficacy on handling constrained optimization problems having more than three objectives has not been widely studied. Particularly the issue of how feasible and infeasible solutions are handled in generating a data set for training a surrogate has not received much attention. In this paper, we use a recently proposed Kriging-assisted evolutionary algorithm for many-objective optimization and investigate the effect of infeasible solutions on the performance of the surrogates. We assume that constraint functions are computationally inexpensive and consider different ways of handling feasible and infeasible solutions for training the surrogate and examine them on different benchmark problems. Results on the comparison with a reference vector guided evolutionary algorithm show that it is vital for the success of the surrogate to properly deal with infeasible solutions.
引用
收藏
页码:214 / 224
页数:11
相关论文
共 50 条
  • [1] Surrogate-assisted Expensive Evolutionary Many-objective Optimization
    Sun, Chao-Li
    Li, Zhen
    Jin, Yao-Chu
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (04): : 1119 - 1128
  • [2] A composite surrogate-assisted evolutionary algorithm for expensive many-objective optimization
    Zhai, Zhaomin
    Tan, Yanyan
    Li, Xiaojie
    Li, Junqing
    Zhang, Huaxiang
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
  • [3] Surrogate-assisted evolutionary optimization of expensive many-objective irregular problems
    Liu, Qiqi
    Jin, Yaochu
    Heiderich, Martin
    Rodemann, Tobias
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 240
  • [4] A surrogate-assisted evolutionary algorithm for expensive many-objective optimization in the refining process
    Han, Dong
    Du, Wenli
    Wang, Xinjie
    Du, Wei
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2022, 69
  • [5] A Hybrid Surrogate-Assisted Evolutionary Algorithm for Computationally Expensive Many-Objective Optimization
    Wan, Kanzhen
    He, Cheng
    Camacho, Auraham
    Shang, Ke
    Cheng, Ran
    Ishibuchi, Hisao
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2018 - 2025
  • [6] An activity level based surrogate-assisted evolutionary algorithm for many-objective optimization
    Pan, Jeng-Shyang
    Zhang, An-Ning
    Chu, Shu-Chu
    Zhao, Jia
    Snasel, Vaclav
    [J]. APPLIED SOFT COMPUTING, 2024, 164
  • [7] An improved bagging ensemble surrogate-assisted evolutionary algorithm for expensive many-objective optimization
    Qinghua Gu
    Xiaoyue Zhang
    Lu Chen
    Naixue Xiong
    [J]. Applied Intelligence, 2022, 52 : 5949 - 5965
  • [8] A Classification-Based Surrogate-Assisted Evolutionary Algorithm for Expensive Many-Objective Optimization
    Pan, Linqiang
    He, Cheng
    Tian, Ye
    Wang, Handing
    Zhang, Xingyi
    Jin, Yaochu
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (01) : 74 - 88
  • [9] An improved bagging ensemble surrogate-assisted evolutionary algorithm for expensive many-objective optimization
    Gu, Qinghua
    Zhang, Xiaoyue
    Chen, Lu
    Xiong, Naixue
    [J]. APPLIED INTELLIGENCE, 2022, 52 (06) : 5949 - 5965
  • [10] Surrogate-Assisted Expensive Many-Objective Optimization by Model Fusion
    He, Cheng
    Cheng, Ran
    Jin, Yaochu
    Yao, Xin
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1672 - 1679