Comments on "Stability analysis of Caputo fractional-order nonlinear systems revisited"

被引:9
|
作者
Wu, Cong [1 ]
机构
[1] Sichuan Univ, West China Hosp, Inst Syst Genet, Chengdu 610041, Peoples R China
关键词
Uniform asymptotic stability; Theorem; Caputo fractional-order system;
D O I
10.1007/s11071-021-06279-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This note points out that the proof for a widely and mostly used (uniform) asymptotic stability theorem for Caputo fractional-order systems, presented by the article "Stability analysis of Caputo fractional-order nonlinear systems revisited" published in Nonlinear Dynamics, is incorrect.
引用
收藏
页码:551 / 555
页数:5
相关论文
共 50 条
  • [31] STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER
    Ben Makhlouf, Abdellatif
    Hammami, Mohamed Ali
    Sioud, Khaled
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (04) : 1309 - 1321
  • [32] A NOTE ON THE LYAPUNOV STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS
    Dadras, Sara
    Dadras, Soodeh
    Malek, Hadi
    Chen, YangQuan
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 9, 2017,
  • [33] Practical stability of fractional-order nonlinear fuzzy systems
    Rhaima, Mohamed
    Mchiri, Lassaad
    Taieb, Nizar Hadj
    Hammami, Mohamed Ali
    Ben Makhlouf, Abdellatif
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2023, 52 (07) : 864 - 875
  • [34] Stability of Nonlinear Fractional-Order Time Varying Systems
    Huang, Sunhua
    Zhang, Runfan
    Chen, Diyi
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (03):
  • [35] BIBO stability of fractional-order controlled nonlinear systems
    Liang, Song
    Wu, Ranchao
    Chen, Liping
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (07) : 1507 - 1514
  • [36] Contraction analysis for fractional-order nonlinear systems
    Gonzalez-Olvera, Marcos A.
    Tang, Yu
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 117 : 255 - 263
  • [37] On Class of Fractional-Order Chaotic or Hyperchaotic Systems in the Context of the Caputo Fractional-Order Derivative
    Sene, Ndolane
    Ndiaye, Ameth
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [38] Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 416 - 422
  • [39] Robust Stability Analysis of Nonlinear Fractional-Order Time-Variant Systems
    Chen Caixue
    Xie Yunxiang
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [40] Stability analysis of nonlinear fractional-order systems with variable-time impulses
    Song, Qiankun
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Chen, Xiaofeng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (07): : 2959 - 2978