Effects of open-circuit operation on membrane and catalyst layer degradation in proton exchange membrane fuel cells

被引:81
|
作者
Zhang, Shengsheng [1 ]
Yuan, Xiao-Zi [1 ]
Hin, Jason Ng Cheng [1 ]
Wang, Haijiang [1 ]
Wu, Jinfeng [1 ]
Friedrich, K. Andreas [2 ]
Schulze, Mathias [2 ]
机构
[1] Natl Res Council Canada, Inst Fuel Cell Innovat, Vancouver, BC V6T 1W5, Canada
[2] German Aerosp Ctr, Inst Tech Thermodynam, D-70569 Stuttgart, Germany
关键词
PEM fuel cell; Membrane; Catalyst layer; Degradation; Open-circuit operation; Open circuit voltage; PERFORMANCE; MECHANISM;
D O I
10.1016/j.jpowsour.2009.08.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Durability issues have been attracting a great deal of attention in hydrogen/air proton exchange membrane (PEM) fuel cell research. In the present work, membrane electrode assembly (MEA) degradation under open circuit (OC) conditions was carried out for more than 250 h. By means of several on-line electrochemical measurements, the performance of the fuel cell was analysed at different times during the degradation process. The results indicate that structural changes in the PEM and catalyst layers (CLs) are the main reasons for the decline in performance during OC operation. The results also show that degradation due to platinum oxidation or catalyst contamination can be partially recovered by a subsequent potential cycling process, whereas the same cycling process cannot recover the membrane degradation. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1142 / 1148
页数:7
相关论文
共 50 条
  • [31] Parametric study of a novel cathode catalyst layer in proton exchange membrane fuel cells
    Du, C. Y.
    Yin, G. P.
    Cheng, X. Q.
    Shi, P. F.
    JOURNAL OF POWER SOURCES, 2006, 160 (01) : 224 - 231
  • [32] Electronic circuit model for proton exchange membrane fuel cells
    Yu, DC
    Yuvarajan, S
    JOURNAL OF POWER SOURCES, 2005, 142 (1-2) : 238 - 242
  • [33] A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation
    Park, Jaeman
    Oh, Hwanyeong
    Ha, Taehun
    Lee, Yoo Il
    Min, Kyoungdoug
    APPLIED ENERGY, 2015, 155 : 866 - 880
  • [34] Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells
    Yu, Shuchun
    Li, Xiaojin
    Li, Jin
    Liu, Sa
    Lu, Wangting
    Shao, Zhigang
    Yi, Baolian
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 301 - 306
  • [35] Limiting current operation of proton exchange membrane fuel cells
    St-Pierre, J.
    Wetton, B.
    Kim, G. -S.
    Promislow, K.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (02) : B186 - B193
  • [36] Operation Characteristics of Hydrogen Proton Exchange Membrane Fuel Cells
    Moldrik, Petr
    Chvalek, Roman
    Sebesta, Robert
    11TH INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRIC POWER ENGINEERING 2010, PROCEEDINGS, 2010, : 359 - 363
  • [37] Identification of performance degradations in catalyst layer and gas diffusion layer in proton exchange membrane fuel cells
    Zhang, Xu
    Yang, Yupeng
    Zhang, Xuyang
    Liu, Hongtan
    JOURNAL OF POWER SOURCES, 2020, 449
  • [38] A Study of the Degradation of a Perfluorinated Membrane during Operation in a Proton-Exchange Membrane Fuel Cell
    D. S. Kudashova
    N. A. Kononenko
    M. A. Brovkina
    I. V. Falina
    Membranes and Membrane Technologies, 2022, 4 : 23 - 30
  • [39] A Study of the Degradation of a Perfluorinated Membrane during Operation in a Proton-Exchange Membrane Fuel Cell
    Kudashova, D. S.
    Kononenko, N. A.
    Brovkina, M. A.
    Falina, I., V
    MEMBRANES AND MEMBRANE TECHNOLOGIES, 2022, 4 (01) : 23 - 30
  • [40] Performance decay of proton-exchange membrane fuel cells under open circuit conditions induced by membrane decomposition
    Sugawara, Seiho
    Maruyama, Takao
    Nagahara, Yoshiki
    Kocha, Shyam S.
    Shinohra, Kazuhiko
    Tsujita, Kohei
    Mitsushima, Shigenori
    Ota, Ken-ichiro
    JOURNAL OF POWER SOURCES, 2009, 187 (02) : 324 - 331