Effects of open-circuit operation on membrane and catalyst layer degradation in proton exchange membrane fuel cells

被引:81
|
作者
Zhang, Shengsheng [1 ]
Yuan, Xiao-Zi [1 ]
Hin, Jason Ng Cheng [1 ]
Wang, Haijiang [1 ]
Wu, Jinfeng [1 ]
Friedrich, K. Andreas [2 ]
Schulze, Mathias [2 ]
机构
[1] Natl Res Council Canada, Inst Fuel Cell Innovat, Vancouver, BC V6T 1W5, Canada
[2] German Aerosp Ctr, Inst Tech Thermodynam, D-70569 Stuttgart, Germany
关键词
PEM fuel cell; Membrane; Catalyst layer; Degradation; Open-circuit operation; Open circuit voltage; PERFORMANCE; MECHANISM;
D O I
10.1016/j.jpowsour.2009.08.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Durability issues have been attracting a great deal of attention in hydrogen/air proton exchange membrane (PEM) fuel cell research. In the present work, membrane electrode assembly (MEA) degradation under open circuit (OC) conditions was carried out for more than 250 h. By means of several on-line electrochemical measurements, the performance of the fuel cell was analysed at different times during the degradation process. The results indicate that structural changes in the PEM and catalyst layers (CLs) are the main reasons for the decline in performance during OC operation. The results also show that degradation due to platinum oxidation or catalyst contamination can be partially recovered by a subsequent potential cycling process, whereas the same cycling process cannot recover the membrane degradation. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1142 / 1148
页数:7
相关论文
共 50 条
  • [21] Numerical Simulation of Effects of Catalyst Layer Parameters on Heat Transfer in Proton Exchange Membrane Fuel Cells
    Li, Yitong
    Guo, Hang
    Ye, Fang
    Chen, Hao
    HEAT TRANSFER ENGINEERING, 2024,
  • [22] Effect of open circuit voltage on degradation of a short proton exchange membrane fuel cell stack with bilayer membrane configurations
    Zhang, Shengsheng
    Yuan, Xiao-Zi
    Hiesgen, Renate
    Friedrich, K. Andreas
    Wang, Haijiang
    Schulze, Mathias
    Haug, Andrea
    Li, Hui
    JOURNAL OF POWER SOURCES, 2012, 205 : 290 - 300
  • [23] Effects of a microporous layer on the performance degradation of proton exchange membrane fuel cells through repetitive freezing
    Lee, Yongtaek
    Kim, Bosung
    Kim, Yongchan
    Li, Xianguo
    JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1940 - 1947
  • [24] Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells
    Qiu, Diankai
    Peng, Linfa
    Liang, Peng
    Yi, Peiyun
    Lai, Xinmin
    ENERGY, 2018, 165 : 210 - 222
  • [25] Accelerated testing of polymer electrolyte membranes under open-circuit voltage conditions for durable proton exchange membrane fuel cells
    Han, Myungseong
    Shul, Yong-Gun
    Lee, Hyejin
    Shin, Dongwon
    Bae, Byungchan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (52) : 30787 - 30791
  • [26] Modeling an ordered nanostructured cathode catalyst layer for proton exchange membrane fuel cells
    Hussain, M. M.
    Song, D.
    Liu, Z. -S.
    Xie, Z.
    JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4533 - 4544
  • [27] Numerical simulation of the ordered catalyst layer in cathode of Proton Exchange Membrane Fuel Cells
    Du, CY
    Cheng, XQ
    Yang, T
    Yin, GP
    Shi, PF
    ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (12) : 1411 - 1416
  • [28] Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells
    Sun, Yanyan
    Polani, Shlomi
    Luo, Fang
    Ott, Sebastian
    Strasser, Peter
    Dionigi, Fabio
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [29] On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells
    Jung, Chi-Young
    Yi, Jae-You
    Yi, Sung-Chul
    ENERGY, 2014, 68 : 794 - 800
  • [30] Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells
    Yanyan Sun
    Shlomi Polani
    Fang Luo
    Sebastian Ott
    Peter Strasser
    Fabio Dionigi
    Nature Communications, 12