Evolution of Gaussian wave packets in capillary jets

被引:3
|
作者
Garcia, F. J. [1 ]
Gonzalez, I. H. [2 ]
Gomez-Aguilar, F. J. [1 ]
Castrejon-Pita, A. A. [3 ]
Castrejon-Pita, J. R. [4 ]
机构
[1] Univ Seville, Escuela Politecn Super, Dept Fis Aplicada 1, C Virgen Africa 7, Seville 41011, Spain
[2] Univ Seville, Escuela Tecn Super Ingn, Dept Fis Aplicada 3, Camino Descubrimientos S-N, Seville 41092, Spain
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
[4] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
ONE-DIMENSIONAL MODELS; DROP FORMATION; LIQUID; BREAKUP; DISTURBANCES; GROWTH;
D O I
10.1103/PhysRevE.100.053111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A temporal analysis of the evolution of Gaussian wave packets in cylindrical capillary jets is presented through both a linear two-mode formulation and a one-dimensional nonlinear numerical scheme. These analyses are normally applicable to arbitrary initial conditions but our study focuses on pure-impulsive ones. Linear and nonlinear findings give consistent results in the stages for which the linear theory is valid. The inverse Fourier transforms representing the formal linear solution for the jet shape is both numerically evaluated and approximated by closed formulas. After a transient, these formulas predict an almost Gaussian-shape deformation with (i) a progressive drift of the carrier wave number to that given by the maximum of the Rayleigh dispersion relation, (ii) a progressive increase of its bell width, and (iii) a quasiexponential growth of its amplitude. These parameters agree with those extracted from the fittings of Gaussian wave packets to the numerical simulations. Experimental results are also reported on near-Gaussian pulses perturbing the exit velocity of a 2-mm diameter water jet. The possibility of controlling the breakup location along the jet and other features, such as pinch-off simultaneity, are demonstrated.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Superposition and interference of Gaussian wave packets for laser transverse modes
    Liu, Lu
    Wang, Fuyong
    LASER PHYSICS, 2024, 34 (10)
  • [42] Hamiltonian dynamics of semiclassical Gaussian wave packets in electromagnetic potentials
    King, Nolan
    Ohsawa, Tomoki
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (10)
  • [43] Generation and evolution of edge-wave packets
    Liu, PLF
    Yeh, H
    Lin, P
    Chang, KT
    Cho, YS
    PHYSICS OF FLUIDS, 1998, 10 (07) : 1635 - 1657
  • [44] Kinematic Analyses of Wave-packets in Non-isothermal Jets
    Liu, Qilin
    Lai, Huanxin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44 (12): : 3272 - 3282
  • [45] Gaussian wave packets in phase space: The Fermi gF function
    Benenti, Giuliano
    Strini, Giuliano
    AMERICAN JOURNAL OF PHYSICS, 2009, 77 (06) : 546 - 551
  • [46] Exact elegant Laguerre-Gaussian vector wave packets
    Nasalski, W.
    OPTICS LETTERS, 2013, 38 (06) : 809 - 811
  • [47] Dynamical phase diagram of Gaussian wave packets in optical lattices
    Hennig, H.
    Neff, T.
    Fleischmann, R.
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [48] Dispersion of non-Gaussian free particle wave packets
    Mita, Katsunori
    AMERICAN JOURNAL OF PHYSICS, 2007, 75 (10) : 950 - 953
  • [49] Spatiotemporal autofocused chirped Pearcey Pearcey Gaussian wave packets
    Chen, Xingyu
    Zhuang, Jingli
    Peng, Xi
    Li, Dongdong
    Zhang, Liping
    Zhao, Fang
    Deng, Dongmei
    OPTICS AND LASER TECHNOLOGY, 2019, 109 : 518 - 524
  • [50] Controllable Laguerre Gaussian wave packets along predesigned trajectories
    Peng, Xi
    Ouyang, Jingyun
    Xu, Danlin
    He, Shangling
    Mo, Zhenwu
    Qiu, Yunli
    He, Yingji
    Zhao, Daomu
    Deng, Dongmei
    OPTICS EXPRESS, 2022, 30 (04) : 6193 - 6202