Evolution of Gaussian wave packets in capillary jets

被引:3
|
作者
Garcia, F. J. [1 ]
Gonzalez, I. H. [2 ]
Gomez-Aguilar, F. J. [1 ]
Castrejon-Pita, A. A. [3 ]
Castrejon-Pita, J. R. [4 ]
机构
[1] Univ Seville, Escuela Politecn Super, Dept Fis Aplicada 1, C Virgen Africa 7, Seville 41011, Spain
[2] Univ Seville, Escuela Tecn Super Ingn, Dept Fis Aplicada 3, Camino Descubrimientos S-N, Seville 41092, Spain
[3] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
[4] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
ONE-DIMENSIONAL MODELS; DROP FORMATION; LIQUID; BREAKUP; DISTURBANCES; GROWTH;
D O I
10.1103/PhysRevE.100.053111
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A temporal analysis of the evolution of Gaussian wave packets in cylindrical capillary jets is presented through both a linear two-mode formulation and a one-dimensional nonlinear numerical scheme. These analyses are normally applicable to arbitrary initial conditions but our study focuses on pure-impulsive ones. Linear and nonlinear findings give consistent results in the stages for which the linear theory is valid. The inverse Fourier transforms representing the formal linear solution for the jet shape is both numerically evaluated and approximated by closed formulas. After a transient, these formulas predict an almost Gaussian-shape deformation with (i) a progressive drift of the carrier wave number to that given by the maximum of the Rayleigh dispersion relation, (ii) a progressive increase of its bell width, and (iii) a quasiexponential growth of its amplitude. These parameters agree with those extracted from the fittings of Gaussian wave packets to the numerical simulations. Experimental results are also reported on near-Gaussian pulses perturbing the exit velocity of a 2-mm diameter water jet. The possibility of controlling the breakup location along the jet and other features, such as pinch-off simultaneity, are demonstrated.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Exact results for 'Bouncing' Gaussian wave packets
    Belloni, M
    Doncheski, MA
    Robinett, RW
    PHYSICA SCRIPTA, 2005, 71 (02) : 136 - 140
  • [22] Decomposition of the wave field into optimized Gaussian packets
    Zacek, K.
    STUDIA GEOPHYSICA ET GEODAETICA, 2006, 50 (03) : 367 - 380
  • [23] On some non-Gaussian wave packets
    Patkowski, Alexander E.
    JOURNAL OF APPLIED ANALYSIS, 2018, 24 (01) : 109 - 114
  • [24] Gaussian Wave Packets Based on “Complex Sources”
    Tagirdzhanov A.M.
    Kiselev A.P.
    Journal of Mathematical Sciences, 2016, 214 (3) : 372 - 381
  • [25] EVOLUTION OF WAVE-PACKETS IN MAGNETOHYDRODYNAMICS
    PUSRI, A
    MALIK, SK
    JOURNAL OF PLASMA PHYSICS, 1995, 53 : 145 - 167
  • [26] THE SEMICLASSICAL EVOLUTION OF WAVE-PACKETS
    LITTLEJOHN, RG
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 138 (4-5): : 193 - 291
  • [27] Nonlinear evolution of Alfvenic wave packets
    Buti, B
    Jayanti, V
    Vinas, AF
    Ghosh, S
    Goldstein, ML
    Roberts, DA
    Lakhina, GS
    Tsurutani, BT
    GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (13) : 2377 - 2380
  • [28] Time evolution of wave packets on nanostructures
    de Prunelé, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (22): : 4843 - 4858
  • [29] Rotating Gaussian wave packets in weak external potentials
    Goussev, Arseni
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [30] Geometry and dynamics of Gaussian wave packets and their Wigner transforms
    Ohsawa, Tomoki
    Tronci, Cesare
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)