The NASICON solid solution Li1-x La x /3Zr2(PO4)3: optimization of the sintering process and ionic conductivity measurements

被引:10
|
作者
Barre, M. [1 ]
Le Berre, F. [1 ]
Crosnier-Lopez, M-P. [1 ]
Galven, C. [1 ]
Bohnke, O. [1 ]
Fourquet, J-L. [1 ]
机构
[1] Univ Maine, CNRS, Inst Rech Ingn Mol & Mat Fonct, Lab Oxydes & Fluorures,FR 2575,UMR 6010, F-72085 Le Mans 9, France
关键词
NASICON-type structure; Li1-xLax/3Zr2(PO4)(3); Sintering; Hot Isostatic Pressing; Spark Plasma Sintering; Impedance spectroscopy; Ionic conductivity; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE; LITHIUM LOCATION; LI+ CONDUCTORS; LA1/3ZR2(PO4)(3); DENSIFICATION; ELECTROLYTES; ENHANCEMENT; CERAMICS;
D O I
10.1007/s11581-009-0332-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Li1-x La (x) Zr-/3(2)(PO4)(3) NASICON-type compounds (0 a parts per thousand currency signaEuro parts per thousand x a parts per thousand currency signaEuro parts per thousand 1) have been synthesized in powder form by a sol-gel method and sintered for ionic conductivity measurements. In order to improve the compactness of the ceramic without decomposition of the compound, several sintering processes have been tested for one member of the solid solution (x = 0.6): the use of sintering aids (ZnO, B2O3, TiO2 and LiNO3), a ball-milling of the synthesized powder, a flash heating, high isostatic pressure, and spark plasma sintering. Finally, a satisfactory compactness of 85% is obtained compared to the referenced value (63%) obtained by uniaxial and isostatic pressing. The ionic conductivity study was performed by impedance spectroscopy. It shows that, despite the formation of vacancies, the substitution Li+-> 1/3 La3+ + 2/3 a- has unfortunately no influence on the conduction for 0 a parts per thousand currency signaEuro parts per thousand x a parts per thousand currency signaEuro parts per thousand 0.7 since the ionic conductivity remains identical to the LiZr2(PO4)(3) one. For higher x values, the ionic conductivity strongly decreases.
引用
收藏
页码:681 / 687
页数:7
相关论文
共 50 条
  • [31] Ionic conductivity of mixed phosphates of the composition Li3 − 2xNbxIn2 − x(PO4)3
    A. R. Shaikhlislamova
    A. B. Yaroslavtsev
    Inorganic Materials, 2008, 44
  • [32] Optimization of sintering process on Li1+xAlxTi2-x(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries
    Yen, Pei-Yi
    Lee, Meng-Lun
    Gregory, Duncan H.
    Liu, Wei-Ren
    CERAMICS INTERNATIONAL, 2020, 46 (12) : 20529 - 20536
  • [33] Li1+xAlxTi2-x (PO4)3, NASICON-type solid electrolyte fabrication with different methods
    Tolganbek, Nurbol
    Mentbayeva, Almagul
    Uzakbaiuly, Berik
    Kanamura, Kiyoshi
    Bakenov, Zhumabay
    MATERIALS TODAY-PROCEEDINGS, 2020, 25 : 97 - 100
  • [34] Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2−x(PO4)3 NASICON-type materials
    Radhouene Kahlaoui
    Kamel Arbi
    Ricardo Jimenez
    Isabel Sobrados
    Jesus Sanz
    Riadh Ternane
    Journal of Materials Science, 2020, 55 : 8464 - 8476
  • [35] Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2-x(PO4)3 NASICON-type materials
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (20) : 8464 - 8476
  • [36] On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2- x(PO4)3 Nasicon type materials
    Arbi, K.
    Jimenez, R.
    Salkus, T.
    Orliukas, A. F.
    Sanz, J.
    SOLID STATE IONICS, 2015, 271 : 28 - 33
  • [37] CRYSTAL CHEMISTRY AND IONIC CONDUCTIVITY OF A NEW NASICON-RELATED SOLID SOLUTION Na1 + xZr2 - x/2Mgx/2(PO4)3.
    Cherkaoui, F.
    Viala, J.C.
    Delmas, C.
    Hagemuller, p.
    1600, (21):
  • [38] Synthesis and Ionic Conductivity of LiZr2(VO4)x(PO4)3 –x
    V. I. Pet’kov
    A. S. Shipilov
    D. G. Fukina
    I. A. Stenina
    A. B. Yaroslavtsev
    Russian Journal of Electrochemistry, 2021, 57 : 388 - 394
  • [39] Synthesis and Ionic Conductivity of NaZr2(AsO4)x(PO4)3 –x
    V. I. Pet’kov
    A. S. Shipilov
    E. Yu. Borovikova
    I. A. Stenina
    A. B. Yaroslavtsev
    Russian Journal of Electrochemistry, 2019, 55 : 1034 - 1038
  • [40] Synthesis and Conductivity Study of Solid Electrolytes Li1 + xAlxGe2–x(PO4)3 (x = 0–0.65)
    M. A. Moshareva
    S. A. Novikova
    Russian Journal of Inorganic Chemistry, 2018, 63 : 319 - 323