Iron Doped in the Subsurface of CuS Nanosheets by Interionic Redox: Highly Efficient Electrocatalysts toward the Oxygen Evolution Reaction

被引:34
|
作者
Chen, Jing [1 ]
Gu, Mingzheng [1 ]
Liu, Shoujie [1 ]
Sheng, Tian [1 ]
Zhang, Xiaojun [1 ]
机构
[1] Anhui Normal Univ, Coll Chem & Mat Sci, Educ Minist China, Key Lab Funct Mol Solids, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
dope; oxygen evolution reaction; subsurface; defects; electrocatalyst; CuS nanosheets; PERFORMANCE HYDROGEN EVOLUTION; ULTRATHIN NANOSHEETS; MECHANISM;
D O I
10.1021/acsami.0c21822
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Modifying the electronic structure of electrocatalysts by metal doping is favorable to their electrocatalytic activity. Herein, by a facile one-pot redox process of Fe(III) and Cu(I), Fe(II) was successfully doped into the subsurface of CuS nanosheets (NSs) for the first time to obtain a novel electrocatalyst (Fe-sub-CuS NSs) that possesses not only subtle lattice defects but also an atomic-level coupled nanointerface, greatly enhancing the oxygen evolution reaction (OER) performances. Meanwhile, Fe(II) and Fe(III) coexisting in Fe-sub-CuS nanosheets are favorable to OER through valence regulation. As expected, by simultaneously controlling the abovementioned three factors to optimize Fe-sub-CuS nanosheets, they display a lower overpotential of 252 mV at a current density of 20 mA cm(-2) for OER, better than 389 mV for pristine CuS nanosheets. This discovery furnishes low-cost and efficient Cu-based electrocatalysts by metal doping. Density functional theory (DFT) calculations further verify that Fe-sub-CuS(100) is thermodynamically stable and is more active for OER. This research provides a strategy for the atomic-scale engineering of nanocatalysts and also sheds light on the design of novel and efficient electrocatalysts.
引用
收藏
页码:16210 / 16217
页数:8
相关论文
共 50 条
  • [41] CoFeBP Micro Flowers (MFs) for Highly Efficient Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts
    Lin, Shusen
    Habib, Md Ahasan
    Joni, Mehedi Hasan
    Dristy, Sumiya Akter
    Mandavkar, Rutuja
    Jeong, Jae-Hun
    Chung, Young-Uk
    Lee, Jihoon
    NANOMATERIALS, 2024, 14 (08)
  • [42] Cobalt iron phosphide nanoparticles embedded within a carbon matrix as highly efficient electrocatalysts for the oxygen evolution reaction
    Han, Jiang
    Chen, Gen
    Liu, Xiaohe
    Zhang, Ning
    Liang, Shuquan
    Ma, Renzhi
    Qiu, Guanzhou
    CHEMICAL COMMUNICATIONS, 2019, 55 (62) : 9212 - 9215
  • [43] Nanoporous metallic-glass electrocatalysts for highly efficient oxygen evolution reaction
    Jin, Yu
    Xi, Guoguo
    Li, Ran
    Li, Zi-An
    Chen, Xiao-Bo
    Zhang, Tao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 852
  • [44] PANI@Co-FeLDHs as highly efficient electrocatalysts for oxygen evolution reaction
    Sun, Xiulun
    Liu, Xinjie
    Liu, Rongmei
    Sun, Xueying
    Li, Anran
    Li, Wen
    CATALYSIS COMMUNICATIONS, 2020, 133
  • [45] Defect-Rich Fe-Doped CoP Nanosheets as Efficient Oxygen Evolution Electrocatalysts
    Chen, Tianyun
    Qin, Shan
    Qian, Min
    Dai, Haojiang
    Fu, Yingyan
    Zhang, Yaqi
    Ye, Bo
    Lin, Qinhan
    Yang, Qinghua
    ENERGY & FUELS, 2021, 35 (13) : 10890 - 10897
  • [46] Highly nitrogen doped carbon nanosheets as an efficient electrocatalyst for the oxygen reduction reaction
    Wang, Lei
    Dou, Shuo
    Xu, Jiantie
    Liu, Hua Kun
    Wang, Shuangyin
    Ma, Jianmin
    Dou, Shi Xue
    CHEMICAL COMMUNICATIONS, 2015, 51 (59) : 11791 - 11794
  • [47] Amorphous FeCoNiBOx nanosheets as highly active and durable electrocatalysts for oxygen evolution reaction in alkaline electrolyte
    Wang, Dan
    Feng, Xiangping
    He, Huan
    Wang, Zhiyuan
    Zheng, Runguo
    Sun, Hongyu
    Liu, Yanguo
    Liu, Chunli
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (48) : 22989 - 22993
  • [48] Synergic effects of FeOOH and CoNi2Se4 bilayer nanosheets as highly efficient electrocatalysts for the oxygen evolution reaction
    Park, Jong-Young
    Rajesh, John Anthuvan
    Kang, Soon-Hyung
    Ahn, Kwang-Soon
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 951
  • [49] Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction
    Jiang, Min
    Li, Jun
    Li, Junming
    Zhao, Yu
    Pan, Lijia
    Cao, Qingqi
    Wang, Dunhui
    Du, Youwei
    NANOSCALE, 2019, 11 (19) : 9654 - 9660
  • [50] Phosphate Doped Ultrathin FeP Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction in Acid Media
    Zhang, Xu
    Ji, Jing
    Yang, Qifeng
    Zhao, Liang
    Yuan, Quan
    Hao, Yajuan
    Jin, Peng
    Feng, Lai
    CHEMCATCHEM, 2019, 11 (10) : 2484 - 2489