Cobalt iron phosphide nanoparticles embedded within a carbon matrix as highly efficient electrocatalysts for the oxygen evolution reaction

被引:23
|
作者
Han, Jiang [1 ,2 ]
Chen, Gen [1 ,2 ]
Liu, Xiaohe [1 ,2 ]
Zhang, Ning [1 ,2 ]
Liang, Shuquan [1 ,2 ]
Ma, Renzhi [3 ]
Qiu, Guanzhou [4 ]
机构
[1] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[3] NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
[4] Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
BIFUNCTIONAL ELECTROCATALYSTS; HYDROXIDE NANOSHEETS; GRAPHENE; HYDROGEN; NITROGEN; OXIDE; REDUCTION; CATALYSTS; FRAMEWORKS; NITRIDE;
D O I
10.1039/c9cc03117k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Co3FePx/C nanocomposites were derived from one-step phosphorization of anthraquinone-2-sulfonate (AQS2) intercalated Co3Fe layered double hydroxides (Co3Fe LDHs). The carbonized AQS2 confines Co3FePx nanoparticles in the amorphous carbon matrix during thermal treatment. Ultra-small and uniformly distributed Co3FePx/C nanoparticles in carbon exhibit excellent durability and outstanding OER catalytic activity.
引用
下载
收藏
页码:9212 / 9215
页数:4
相关论文
共 50 条
  • [1] Metal phosphide nanoparticles embedded in carbon as efficient electrocatalyst for oxygen evolution reaction
    Shanmugam, Sangaraju
    Sivanantham, Arumugam
    Matsunaga, Mariko
    Simon, Ulrich
    Osaka, Tetsuya
    ELECTROCHIMICA ACTA, 2019, 297 : 749 - 754
  • [2] Mesoporous cobalt-iron based materials as highly efficient electrocatalysts for oxygen evolution reaction
    Guo, Donggang
    Kang, Hongzhi
    Hao, Zewei
    Yang, Yang
    Wei, Pengkun
    Zhang, Quanxi
    Liu, Lu
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 873
  • [3] Facile synthesis of cobalt phosphide nanoparticles as highly active electrocatalysts for hydrogen evolution reaction
    Luo, Shanshan
    Hei, Peng
    Wang, Ran
    Yin, Juanjuan
    Hong, Wei
    Liu, Shufeng
    Bai, Zhenhua
    Jiao, Tifeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 600
  • [4] MOF-derived cobalt phosphide as highly efficient electrocatalysts for hydrogen evolution reaction
    Duan, Donghong
    Feng, Jiarong
    Liu, Shibin
    Wang, Yunfang
    Zhou, Xianxian
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 892
  • [5] Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen
    Liu, Mengjia
    Li, Jinghong
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) : 2158 - 2165
  • [6] Surface engineering of MOFs as a route to cobalt phosphide electrocatalysts for efficient oxygen evolution reaction
    Liu, Haitao
    Yang, Shaoxuan
    Ma, Jinyuan
    Dou, Meiling
    Wang, Feng
    NANO ENERGY, 2022, 98
  • [7] MOF-derived cobalt manganese phosphide as highly efficient electrocatalysts for hydrogen evolution reaction
    Duan, Donghong
    Feng, Jiarong
    Guo, Desheng
    Gao, Jie
    Liu, Shibin
    Wang, Yunfang
    Zhou, Xianxian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (26) : 12927 - 12936
  • [8] Cobalt phosphide/carbon dots composite as an efficient electrocatalyst for oxygen evolution reaction
    Zhu, Mengmeng
    Zhou, Yunjie
    Sun, Yue
    Zhu, Cheng
    Hu, Lulu
    Gao, Jin
    Huang, Hui
    Liu, Yang
    Kang, Zhenhui
    DALTON TRANSACTIONS, 2018, 47 (15) : 5459 - 5464
  • [9] Tailoring π-symmetry electrons in cobalt-iron phosphide for highly efficient oxygen evolution
    Zhang, Yi
    Gao, Xiaobin
    Lv, Lin
    Xu, Jie
    Lin, Haofeng
    Ding, Yigang
    Wang, Chundong
    ELECTROCHIMICA ACTA, 2020, 341
  • [10] Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction
    Liu, Yihao
    Ran, Nian
    Ge, Riyue
    Liu, Jianjun
    Li, Wenxian
    Chen, Yingying
    Feng, Lingyan
    Che, Renchao
    CHEMICAL ENGINEERING JOURNAL, 2021, 425