Functional maximum-likelihood estimation of ARH(p) models

被引:22
|
作者
Ruiz-Medina, M. D. [1 ]
Salmeron, R. [2 ]
机构
[1] Univ Granada, Dept Estadist & Invest Operat, E-18071 Granada, Spain
[2] Univ Granada, Dept Metodos Cuantitativos Econ & Empresa, Granada 18011, Spain
关键词
Autoregressive Hilbertian models; Dimension reduction; Finite-dimensional approximation; Functional parameters; Maximum-likelihood estimation; Singular value decomposition; Spatial functional data sequence; GENE-EXPRESSION DATA; SINGULAR-VALUE DECOMPOSITION; AUTOREGRESSIVE MODELS; LONGITUDINAL DATA; CLASSIFICATION; CONVERGENCE; OPERATOR;
D O I
10.1007/s00477-009-0306-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition.
引用
下载
收藏
页码:131 / 146
页数:16
相关论文
共 50 条