Functional maximum-likelihood estimation of ARH(p) models

被引:22
|
作者
Ruiz-Medina, M. D. [1 ]
Salmeron, R. [2 ]
机构
[1] Univ Granada, Dept Estadist & Invest Operat, E-18071 Granada, Spain
[2] Univ Granada, Dept Metodos Cuantitativos Econ & Empresa, Granada 18011, Spain
关键词
Autoregressive Hilbertian models; Dimension reduction; Finite-dimensional approximation; Functional parameters; Maximum-likelihood estimation; Singular value decomposition; Spatial functional data sequence; GENE-EXPRESSION DATA; SINGULAR-VALUE DECOMPOSITION; AUTOREGRESSIVE MODELS; LONGITUDINAL DATA; CLASSIFICATION; CONVERGENCE; OPERATOR;
D O I
10.1007/s00477-009-0306-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper the problem of functional filtering of an autoregressive Hilbertian (ARH) process, affected by additive Hilbertian noise, is addressed when the functional parameters defining the ARH(p) equation are unknown. The maximum-likelihood estimation of such parameters is obtained from the implementation of an expectation-maximization algorithm. Specifically, a finite-dimensional matrix approximation of the state equation is considered from its diagonalization in terms of the spectral decomposition of the functional parameters involved (Principal-Oscillation-Pattern-based diagonalization). The Expectation step and maximization step are then computed from the forward Kalman filtering followed by a backward Kalman smoothing recursion in terms of the Fourier coefficients associated with such a decomposition.
引用
下载
收藏
页码:131 / 146
页数:16
相关论文
共 50 条
  • [31] MAXIMUM-LIKELIHOOD ESTIMATION OF PROPORTION OF NONPATERNITY
    POTTHOFF, RF
    WHITTING.M
    AMERICAN JOURNAL OF HUMAN GENETICS, 1965, 17 (06) : 480 - &
  • [33] APPROXIMATE MAXIMUM-LIKELIHOOD FREQUENCY ESTIMATION
    STOICA, P
    HANDEL, P
    SODERSTROM, T
    AUTOMATICA, 1994, 30 (01) : 131 - 145
  • [34] Maximum-likelihood methods for phylogeny estimation
    Sullivan, J
    MOLECULAR EVOLUTION: PRODUCING THE BIOCHEMICAL DATA, PART B, 2005, 395 : 757 - 779
  • [35] Maximum-likelihood estimation of Mueller matrices
    Aiello, A
    Puentes, G
    Voigt, D
    Woerdman, JP
    OPTICS LETTERS, 2006, 31 (06) : 817 - 819
  • [36] MAXIMUM-LIKELIHOOD ESTIMATION - THE BEST PEST
    PENTLAND, A
    PERCEPTION & PSYCHOPHYSICS, 1980, 28 (04): : 377 - 379
  • [37] MAXIMUM-LIKELIHOOD ESTIMATION OF SEISMIC MAGNITUDE
    RINGDAL, F
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1976, 66 (03) : 789 - 802
  • [38] Maximum-likelihood method in quantum estimation
    Paris, MGA
    D'Ariano, GM
    Sacchi, MF
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 456 - 467
  • [39] MAXIMUM-LIKELIHOOD ESTIMATION OF SPACECRAFT ATTITUDE
    SHUSTER, MD
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 1989, 37 (01): : 79 - 88
  • [40] MAXIMUM-LIKELIHOOD ESTIMATION IN THE PRESENCE OF OUTLIERS
    GATHER, U
    KALE, BK
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (11) : 3767 - 3784