Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration

被引:12
|
作者
Oberdiek, Franciska [1 ]
Vargas, Carlos Ivan [2 ,3 ]
Rider, Patrick [1 ]
Batinic, Milijana [4 ,5 ]
Goerke, Oliver [5 ]
Radenkovic, Milena [6 ]
Najman, Stevo [6 ,7 ]
Baena, Jose Manuel [3 ]
Jung, Ole [8 ]
Barbeck, Mike [5 ]
机构
[1] ScientiFY GmbH, D-15806 Zossen, Germany
[2] Univ Politecn Madrid, Escuela Tecn Super Ingn Ind, Calle Jose Gutierrez Abascal 2, Madrid 28006, Spain
[3] REGEMAT 3D, Ave Conocimiento 41,A-111, Granada 18016, Spain
[4] BerlinAnalytix GmbH, Res Dept, D-12109 Berlin, Germany
[5] Tech Univ Berlin, Inst Mat Sci & Technol, Dept Ceram Mat, Chair Adv Ceram Mat, D-10623 Berlin, Germany
[6] Univ Nis, Dept Cell & Tissue Engn, Sci Res Ctr Biomed, Fac Med, Nish 18000, Serbia
[7] Univ Nis, Dept Biol & Human Genet, Fac Med, Nish 18000, Serbia
[8] Univ Med Ctr Rostock, Clin & Policlin Dermatol & Venereol, D-18057 Rostock, Germany
关键词
3D-printing; bioprinting; biphasic bone substitute; in vivo; macrophages; inflammation; bone regeneration; MULTINUCLEATED GIANT-CELLS; VITRO DEGRADATION; TRABECULAR BONE; BIOCOMPATIBILITY; POLYCAPROLACTONE; FABRICATION; COLLAGEN; TCP; HYDROXYAPATITE; SUITABILITY;
D O I
10.3390/ijms22073588
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
(1) Background: The aim of this study was examining the ex vivo and in vivo properties of a composite made from polycaprolactone (PCL) and biphasic calcium phosphate (BCP) (synprint, ScientiFY GmbH) fabricated via fused deposition modelling (FDM); (2) Methods: Scaffolds were tested ex vivo for their mechanical properties using porous and solid designs. Subcutaneous implantation model analyzed the biocompatibility of PCL + BCP and PCL scaffolds. Calvaria implantation model analyzed the osteoconductive properties of PCL and PCL + BCP scaffolds compared to BCP as control group. Established histological, histopathological and histomorphometrical methods were performed to evaluate new bone formation.; (3) Results Mechanical testing demonstrated no significant differences between PCL and PCL + BCP for both designs. Similar biocompatibility was observed subcutaneously for PCL and PCL + BCP scaffolds. In the calvaria model, new bone formation was observed for all groups with largest new bone formation in the BCP group, followed by the PCL + BCP group, and the PCL group. This finding was influenced by the initial volume of biomaterial implanted and remaining volume after 90 days. All materials showed osteoconductive properties and PCL + BCP tailored the tissue responses towards higher cellular biodegradability. Moreover, this material combination led to a reduced swelling in PCL + BCP; (4) Conclusions: Altogether, the results show that the newly developed composite is biocompatible and leads to successful osteoconductive bone regeneration. The new biomaterial combines the structural stability provided by PCL with bioactive characteristics of BCP-based BSM. 3D-printed BSM provides an integration behavior in accordance with the concept of guided bone regeneration (GBR) by directing new bone growth for proper function and restoration.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] 3D printed calcium phosphate scaffolds with controlled release of osteogenic drugs for bone regeneration
    Sun, Huan
    Zhang, Chenxi
    Zhang, Boqing
    Song, Ping
    Xu, Xiujuan
    Gui, Xingyu
    Chen, Xinyue
    Lu, Gonggong
    Li, Xiang
    Liang, Jie
    Sun, Jianxun
    Jiang, Qing
    Zhou, Changchun
    Fan, Yujiang
    Zhou, Xuedong
    Zhang, Xingdong
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [32] In vivo performance of an injectable biphasic calcium phosphate bone filler
    Layrolle, P.
    Baroth, S.
    Goyenvalle, E.
    Aguado, E.
    Moreau, F.
    Daculsi, G.
    BIOCERAMICS 21, 2009, 396-398 : 583 - 586
  • [33] In vivo performance of an injectable biphasic calcium phosphate bone filler
    Layrolle, P.
    Baroth, S.
    Goyenvalle, E.
    Aguado, E.
    Moreau, F.
    Daculsi, G.
    Key Engineering Materials, 2009, 396-398 : 583 - 586
  • [34] 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues
    Natarajan, Amrita
    Sivadas, V. P.
    Nair, Prabha D.
    BIOMEDICAL MATERIALS, 2021, 16 (05)
  • [35] 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues
    Natarajan, Amrita
    Sivadas, V.P.
    Nair, Prabha D.
    Biomedical Materials (Bristol), 2021, 16 (05):
  • [36] Bone regeneration of multichannel biphasic calcium phosphate granules supplemented with hyaluronic acid
    Taz, Mirana
    Makkar, Preeti
    Imran, Khan Mohammad
    Jang, D. W.
    Kim, Yong-Sik
    Lee, Byong-Taek
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 99 : 1058 - 1066
  • [37] Surface immobilization of biphasic calcium phosphate nanoparticles on 3D printed poly(caprolactone) scaffolds enhances osteogenesis and bone tissue regeneration
    Shim, Kyu-Sik
    Kim, Sung Eun
    Yun, Young-Pil
    Jeon, Daniel I.
    Kim, Hak Jun
    Park, Kyeongsoon
    Song, Hae-Ryong
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 55 : 101 - 109
  • [38] Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model
    Xu, Zhimin
    Sun, Yidan
    Dai, Huanyan
    Ma, Yujie
    Bing, Han
    MOLECULES, 2022, 27 (14):
  • [39] Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies
    Grynpas, MD
    Pilliar, RM
    Kandel, RA
    Renlund, R
    Filiaggi, M
    Dumitriu, M
    BIOMATERIALS, 2002, 23 (09) : 2063 - 2070
  • [40] Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration
    Heo, Seong-Yeong
    Ko, Seok-Chun
    Oh, Gun-Woo
    Kim, Namwon
    Choi, Il-Whan
    Park, Won Sun
    Jung, Won-Kyo
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2019, 107 (06) : 1937 - 1944