Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration

被引:12
|
作者
Oberdiek, Franciska [1 ]
Vargas, Carlos Ivan [2 ,3 ]
Rider, Patrick [1 ]
Batinic, Milijana [4 ,5 ]
Goerke, Oliver [5 ]
Radenkovic, Milena [6 ]
Najman, Stevo [6 ,7 ]
Baena, Jose Manuel [3 ]
Jung, Ole [8 ]
Barbeck, Mike [5 ]
机构
[1] ScientiFY GmbH, D-15806 Zossen, Germany
[2] Univ Politecn Madrid, Escuela Tecn Super Ingn Ind, Calle Jose Gutierrez Abascal 2, Madrid 28006, Spain
[3] REGEMAT 3D, Ave Conocimiento 41,A-111, Granada 18016, Spain
[4] BerlinAnalytix GmbH, Res Dept, D-12109 Berlin, Germany
[5] Tech Univ Berlin, Inst Mat Sci & Technol, Dept Ceram Mat, Chair Adv Ceram Mat, D-10623 Berlin, Germany
[6] Univ Nis, Dept Cell & Tissue Engn, Sci Res Ctr Biomed, Fac Med, Nish 18000, Serbia
[7] Univ Nis, Dept Biol & Human Genet, Fac Med, Nish 18000, Serbia
[8] Univ Med Ctr Rostock, Clin & Policlin Dermatol & Venereol, D-18057 Rostock, Germany
关键词
3D-printing; bioprinting; biphasic bone substitute; in vivo; macrophages; inflammation; bone regeneration; MULTINUCLEATED GIANT-CELLS; VITRO DEGRADATION; TRABECULAR BONE; BIOCOMPATIBILITY; POLYCAPROLACTONE; FABRICATION; COLLAGEN; TCP; HYDROXYAPATITE; SUITABILITY;
D O I
10.3390/ijms22073588
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
(1) Background: The aim of this study was examining the ex vivo and in vivo properties of a composite made from polycaprolactone (PCL) and biphasic calcium phosphate (BCP) (synprint, ScientiFY GmbH) fabricated via fused deposition modelling (FDM); (2) Methods: Scaffolds were tested ex vivo for their mechanical properties using porous and solid designs. Subcutaneous implantation model analyzed the biocompatibility of PCL + BCP and PCL scaffolds. Calvaria implantation model analyzed the osteoconductive properties of PCL and PCL + BCP scaffolds compared to BCP as control group. Established histological, histopathological and histomorphometrical methods were performed to evaluate new bone formation.; (3) Results Mechanical testing demonstrated no significant differences between PCL and PCL + BCP for both designs. Similar biocompatibility was observed subcutaneously for PCL and PCL + BCP scaffolds. In the calvaria model, new bone formation was observed for all groups with largest new bone formation in the BCP group, followed by the PCL + BCP group, and the PCL group. This finding was influenced by the initial volume of biomaterial implanted and remaining volume after 90 days. All materials showed osteoconductive properties and PCL + BCP tailored the tissue responses towards higher cellular biodegradability. Moreover, this material combination led to a reduced swelling in PCL + BCP; (4) Conclusions: Altogether, the results show that the newly developed composite is biocompatible and leads to successful osteoconductive bone regeneration. The new biomaterial combines the structural stability provided by PCL with bioactive characteristics of BCP-based BSM. 3D-printed BSM provides an integration behavior in accordance with the concept of guided bone regeneration (GBR) by directing new bone growth for proper function and restoration.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Ex vivo characterization of novel 3D-printed scaffolds for peripheral nerve tissue engineering applications
    Etayo Escanilla, Miguel
    Campos, Fernando
    Garcia Garcia, Oscar Dario
    Chato Astrain, Jesus
    Ortiz Arrabal, Olimpia
    Campos, Antonio
    Manuel Baena, Jose
    Sanchez Porras, David
    Campillo, Noelia
    Carrie, Victor
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)
  • [22] 3D-Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration
    Li, Guanlin
    Li, Zehao
    Min, Yajun
    Chen, Shilu
    Han, Ruijia
    Zhao, Zheng
    SMALL, 2023, 19 (40)
  • [23] 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration
    Wei, Jiawei
    Yan, Yan
    Gao, Jing
    Li, Yubao
    Wang, Ruili
    Wang, Jiexin
    Zou, Qin
    Zuo, Yi
    Zhu, Meifang
    Li, Jidong
    BIOMATERIALS ADVANCES, 2022, 133
  • [24] Comparative Efficacies of Collagen-Based 3D Printed PCL/PLGA/β-TCP Composite Block Bone Grafts and Biphasic Calcium Phosphate Bone Substitute for Bone Regeneration
    Hwang, Kyoung-Sub
    Choi, Jae-Won
    Kim, Jae-Hun
    Chung, Ho Yun
    Jin, Songwan
    Shim, Jin-Hyung
    Yun, Won-Soo
    Jeong, Chang-Mo
    Huh, Jung-Bo
    MATERIALS, 2017, 10 (04):
  • [25] Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds
    Rustom, Laurence E.
    Boudou, Thomas
    Lou, Siyu
    Pignot-Paintrand, Isabelle
    Nemke, Brett W.
    Lu, Yan
    Markel, Mark D.
    Picart, Catherine
    Johnson, Amy Wagoner
    ACTA BIOMATERIALIA, 2016, 44 : 144 - 154
  • [26] 3D-Printed Composite Bioceramic Scaffolds for Bone and Cartilage Integrated Regeneration
    Xu, Nanjian
    Lu, Dezhi
    Qiang, Lei
    Liu, Yihao
    Yin, Dalin
    Wang, Zhiyong
    Luo, Yongxiang
    Yang, Chen
    Ma, Zhenjiang
    Ma, Hui
    Wang, Jinwu
    ACS OMEGA, 2023, 8 (41): : 37918 - 37926
  • [27] 3D-printed injectable nanocomposite cryogel scaffolds for bone tissue regeneration
    Castanheira, Edgar J.
    Maia, Joao R.
    Monteiro, Luis P. G.
    Sobreiro-Almeida, Rita
    Wittig, Nina K.
    Birkedal, Henrik
    Rodrigues, Joao M. M.
    Mano, Joao F.
    MATERIALS TODAY NANO, 2024, 28
  • [28] 3D-Printed Antibacterial Scaffolds for the Regeneration of Alveolar Bone in Severe Periodontitis
    Theodoridis, Konstantinos
    Arampatzis, Athanasios S.
    Liasi, Georgia
    Tsalikis, Lazaros
    Barmpalexis, Panagiotis
    Christofilos, Dimitrios
    Assimopoulou, Andreana N.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (23)
  • [29] Multiscale porosity in mesoporous bioglass 3D-printed scaffolds for bone regeneration
    Gomez-Cerezo, M. Natividad
    Pena, Juan
    Ivanovski, Saso
    Arcos, Daniel
    Vallet-Regi, Maria
    Vaquette, Cedryck
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 120
  • [30] Scanning Electron Microscopic Evaluation of the Internal Fit Accuracy of 3D-Printed Biphasic Calcium Phosphate Block: An Ex Vivo Pilot Study
    Jeon, Su-Hee
    Song, Young Woo
    Cha, Jae-Kook
    Paik, Jeong-Won
    Han, Sang-Sun
    Choi, Seong-Ho
    MATERIALS, 2021, 14 (06)