Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production

被引:94
|
作者
Ni, Meng [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Kowloon, Hong Kong, Peoples R China
关键词
Heat and mass transfer; Solid oxide fuel cell (SOFC); High temperature steam electrolysis; Electrochemistry; Porous media; Transport phenomena; HIGH-TEMPERATURE ELECTROLYSIS; FUEL-CELL; STEAM ELECTROLYSIS; WATER-VAPOR; TRANSPORT PHENOMENA; HEAT/MASS TRANSFER; COUPLED TRANSPORT; DUCTS RELEVANT; ENERGY; ANODE;
D O I
10.1016/j.ijhydene.2009.07.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A 2D computational fluid dynamics (CFD) model was developed to study the performance of a planar solid oxide electrolyzer cell (SOEC) for hydrogen production. The governing equations for mass continuity, momentum conservation, energy conservation and species conservation were discretized with the finite volume method (FVM). The coupling of velocity and pressure was treated with the SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm. Simulations were performed to investigate the effects of operating/structural parameters on heat/mass transfer and the electric characteristics of a planar SOEC. It is found that the gas velocity at the cathode increases significantly along the main flow channel, as the increase in H-2 molar fraction decreases the density and viscosity of the gas mixture at the cathode. It is also found that increasing the inlet gas velocity can enhance the SOEC performance. Another important finding is that the electrode porosity has small effect on SOEC performance. The results of this paper provide better understanding on the coupled heat/mass transfer and electrochemical reaction phenomena in an SOEC. The model developed can serve as a useful tool for SOEC design optimization. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7795 / 7806
页数:12
相关论文
共 50 条
  • [21] A novel system for the production of pure hydrogen from natural gas based on solid oxide fuel cell-solid oxide electrolyzer
    Iora, P.
    Taher, M. A. A.
    Chiesa, P.
    Brandon, N. P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (22) : 12680 - 12687
  • [22] Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant
    Ni, Meng
    Leung, Michael K. H.
    Leung, DennisY. C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (18) : 4648 - 4660
  • [23] A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production
    Menon, Vikram
    Janardhanan, Vinod M.
    Deutschmann, Olaf
    CHEMICAL ENGINEERING SCIENCE, 2014, 110 : 83 - 93
  • [24] Hydrogen Production by High Temperature Electrolysis Using Solid Oxide Electrolyzer Cells
    Kim, S. D.
    Yu, J. H.
    Seo, D. W.
    Han, I. S.
    Woo, S. K.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 2957 - 2960
  • [25] Computational fluid dynamics modeling of hydrogen production in an autothermal reactor: Effect of different thermal conditions
    Shabanian, Sayed Reza
    Rahimi, Masoud
    Amiri, Amin
    Sharifnia, Shahram
    Alsairafi, Ammar Abdulaziz
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2012, 29 (11) : 1531 - 1540
  • [26] Computational fluid dynamics modeling of hydrogen production in an autothermal reactor: Effect of different thermal conditions
    Sayed Reza Shabanian
    Masoud Rahimi
    Amin Amiri
    Shahram Sharifnia
    Ammar Abdulaziz Alsairafi
    Korean Journal of Chemical Engineering, 2012, 29 : 1531 - 1540
  • [27] Methane pyrolysis for hydrogen production: Modeling of soot deposition by computational fluid dynamics and experimental validation
    Carretta, Filippo
    Pelucchi, Silvia
    Galli, Federico
    Mocellin, Paolo
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [28] Methane pyrolysis for hydrogen production: Modeling of soot deposition by computational fluid dynamics and experimental validation
    Carretta, Filippo
    Pelucchi, Silvia
    Galli, Federico
    Mocellin, Paolo
    Chemical Engineering Journal, 2024, 485
  • [29] Pathway toward cost-effective green hydrogen production by solid oxide electrolyzer
    Liu, Hua
    Clausen, Lasse Rongaard
    Wang, Ligang
    Chen, Ming
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (05) : 2090 - 2111
  • [30] Electrochemical Characterization of a Solid Oxide Membrane Electrolyzer for Production of High-Purity Hydrogen
    Soobhankar Pati
    Kyung Joong Yoon
    Srikanth Gopalan
    Uday B. Pal
    Metallurgical and Materials Transactions B, 2009, 40 : 1041 - 1053