Pathway toward cost-effective green hydrogen production by solid oxide electrolyzer

被引:41
|
作者
Liu, Hua [1 ]
Clausen, Lasse Rongaard [2 ]
Wang, Ligang [3 ]
Chen, Ming [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Civil & Mech Engn, DK-2800 Lyngby, Denmark
[3] North China Elect Power Univ, Inst Energy Power Innovat, Beijing 100193, Peoples R China
关键词
WASTE HEAT-RECOVERY; HIGH-TEMPERATURE ELECTROLYSIS; FUEL-CELL; STEAM ELECTROLYSIS; POWER; WIND; CO2; PERFORMANCE; FUTURE; CYCLE;
D O I
10.1039/d3ee00232b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid oxide electrolysis cell (SOEC) is one way to regulate wind power by producing green hydrogen. However, degradation increases the resistance of SOEC, especially at high current density. This work simulates the heat balance and the degradation process at the system level and compares the Levelized Cost of Hydrogen (LCOH) at different locations through three scenarios: heat integration, super grid connection, and SOEC development. Both heat source and wind power costs are involved in the analysis and optimization of a 5000 kg H-2 per day SOEC recirculating system. The voltage and operating conditions of minimum LCOH are located with a two-stage stochastic optimization approach. As a result, SOEC generates extra ohmic heat and reduces the external heat demand from 29.9 MW to 1.8 MW after degradation. LCOH reduced to $3.60 per kg with heat integration. The super grid will cut the LCOH further to $2.59 per kg. SOEC development will break through the trade-off between current density and degradation, resulting in an LCOH of $2.18 per kg. By 2035, green hydrogen is expected to reach an LCOH of $1.40 per kg and outperform gray hydrogen.
引用
收藏
页码:2090 / 2111
页数:22
相关论文
共 50 条
  • [1] COST-EFFECTIVE METHODS FOR HYDROGEN-PRODUCTION
    MINET, RG
    DESAI, K
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1983, 8 (04) : 285 - 290
  • [2] An electrochemical model of a solid oxide steam electrolyzer for hydrogen production
    Ni, Meng
    Leung, Michael K. H.
    Leung, Dennis Y. C.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2006, 29 (05) : 636 - 642
  • [3] Thermodynamic and electrochemical analyses of a solid oxide electrolyzer for hydrogen production
    AlZahrani, Abdullah A.
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (33) : 21404 - 21413
  • [4] Parametric study of solid oxide steam electrolyzer for hydrogen production
    Ni, Meng
    Leung, Michael K. H.
    Leung, Dennis Y. C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (13) : 2305 - 2313
  • [5] Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)
    Ni, Meng
    Leung, Michael K. H.
    Leung, Dennis Y. C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (09) : 2337 - 2354
  • [6] Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant
    Ni, Meng
    Leung, Michael K. H.
    Leung, DennisY. C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (18) : 4648 - 4660
  • [7] A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production
    Menon, Vikram
    Janardhanan, Vinod M.
    Deutschmann, Olaf
    CHEMICAL ENGINEERING SCIENCE, 2014, 110 : 83 - 93
  • [8] Hydrogen Production by High Temperature Electrolysis Using Solid Oxide Electrolyzer Cells
    Kim, S. D.
    Yu, J. H.
    Seo, D. W.
    Han, I. S.
    Woo, S. K.
    SOLID OXIDE FUEL CELLS 12 (SOFC XII), 2011, 35 (01): : 2957 - 2960
  • [9] Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production
    Ni, Meng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (18) : 7795 - 7806
  • [10] Optimization of Integrated Solid Refuse Fuel and Solid Oxide Electrolyzer Cell System for Hydrogen Production
    Oh, Mireu Sunhee
    Park, Seong-Ryong
    Kang, Yong Tae
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023