A Frank-Wolfe Based Algorithm for Robust Discrete Optimization Under Uncertainty

被引:1
|
作者
Al Dahik, Chifaa [1 ,2 ,3 ]
Al Masry, Zeina [1 ,2 ]
Chretien, Stephane [4 ]
Nicod, Jean-Marc [1 ,2 ]
Rabehasaina, Landy [1 ,3 ]
机构
[1] Univ Bourgogne Franche Comte, CNRS, ENSMM, Besancon, France
[2] FEMTO ST Inst, Besancon, France
[3] Lab Math Besancon, Besancon, France
[4] Univ Lyon2, Lab ERIC, UFR ASSP, Lyon, France
关键词
Uncertainty; Robust Clustering; Robust Discrete Optimization; Ellipsoidal uncertainty set;
D O I
10.1109/PHM-Besancon49106.2020.00048
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper addresses a class of robust optimization problems whose inputs are correlated and belong to an ellipsoidal uncertainty set, which is known to be NP-Hard. For that, we propose an efficient heuristic scalable approach based on the iterative Frank-Wolfe (FW) algorithm. In our approach, we take a radically different perspective on FW by looking at the exploration power of the integer inner iterates of the method. Our main discovery is that, for small dimensional instances, our method is able to provide the same optimal integer solution as an exact method provided by CPLEX, after no more than a few hundred iterations. Moreover, as opposed to the exact method, our FW-guided integer exploration approach applies to large scale problems as well. Our findings are illustrated by comprehensive numerical experiments. We focus on two target applications, the robust shortest path problem as a first test case, and the robust clustering as a real application in a PHM context and data analysis.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 50 条
  • [1] Robust matrix estimations meet Frank-Wolfe algorithm
    Jing, Naimin
    Fang, Ethan X. X.
    Tang, Cheng Yong
    [J]. MACHINE LEARNING, 2023, 112 (07) : 2723 - 2760
  • [2] FRANK-WOLFE ALGORITHM FROM OPTIMIZATION TO EQUILIBRIUM PROBLEMS
    Moudafi, Abdellatif
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (11) : 2335 - 2345
  • [3] Federated Frank-Wolfe Algorithm
    Dadras, Ali
    Banerjee, Sourasekhar
    Prakhya, Karthik
    Yurtsever, Alp
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT III, ECML PKDD 2024, 2024, 14943 : 58 - 75
  • [4] Distributed Momentum-Based Frank-Wolfe Algorithm for Stochastic Optimization
    Hou, Jie
    Zeng, Xianlin
    Wang, Gang
    Sun, Jian
    Chen, Jie
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (03) : 685 - 699
  • [5] Distributed Momentum-Based Frank-Wolfe Algorithm for Stochastic Optimization
    Jie Hou
    Xianlin Zeng
    Gang Wang
    Jian Sun
    Jie Chen
    [J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10 (03) : 685 - 699
  • [6] Online Learning for IoT Optimization: A Frank-Wolfe Adam-Based Algorithm
    Zhang, Mingchuan
    Zhou, Yangfan
    Quan, Wei
    Zhu, Junlong
    Zheng, Ruijuan
    Wu, Qingtao
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (09): : 8228 - 8237
  • [7] The Frank-Wolfe Algorithm: A Short Introduction
    Pokutta S.
    [J]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2024, 126 (1) : 3 - 35
  • [8] Adaptive Variant of the Frank-Wolfe Algorithm for Convex Optimization Problems
    Aivazian, G. V.
    Stonyakin, F. S.
    Pasechnyk, D. A.
    Alkousa, M. S.
    Raigorodsky, A. M.
    Baran, I. V.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (06) : 493 - 504
  • [9] ACCELERATING CONVERGENCE OF THE FRANK-WOLFE ALGORITHM
    WEINTRAUB, A
    ORTIZ, C
    GONZALEZ, J
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1985, 19 (02) : 113 - 122
  • [10] A Frank-Wolfe based branch-and-bound algorithm for mean-risk optimization
    Buchheim, Christoph
    De Santis, Marianna
    Rinaldi, Francesco
    Trieu, Long
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (03) : 625 - 644