A Frank-Wolfe based branch-and-bound algorithm for mean-risk optimization

被引:5
|
作者
Buchheim, Christoph [1 ]
De Santis, Marianna [2 ]
Rinaldi, Francesco [3 ]
Trieu, Long [1 ]
机构
[1] TU Dortmund, Fak Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
[2] Univ Roma La Sapienza, Dipartimento Ingn Informat Automat & Gest, Via Ariosto 25, I-00185 Rome, Italy
[3] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
关键词
Mixed-integer programming; Mean-risk optimization; Global optimization; NONMONOTONE LINE SEARCH; NEWTON METHOD; CONVERGENCE; STEP;
D O I
10.1007/s10898-017-0571-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address this class of convex mixed-integer minimization problems by designing a branch-and-bound algorithm, where at each node, the continuous relaxation is solved by a non-monotone Frank-Wolfe type algorithm with away-steps. Experimental results on portfolio optimization problems show that our approach can outperform the MISOCP solver of CPLEX 12.6 for instances where a linear risk-weighting function is considered.
引用
收藏
页码:625 / 644
页数:20
相关论文
共 50 条
  • [1] A Frank–Wolfe based branch-and-bound algorithm for mean-risk optimization
    Christoph Buchheim
    Marianna De Santis
    Francesco Rinaldi
    Long Trieu
    [J]. Journal of Global Optimization, 2018, 70 : 625 - 644
  • [2] FRANK-WOLFE ALGORITHM FROM OPTIMIZATION TO EQUILIBRIUM PROBLEMS
    Moudafi, Abdellatif
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (11) : 2335 - 2345
  • [3] Federated Frank-Wolfe Algorithm
    Dadras, Ali
    Banerjee, Sourasekhar
    Prakhya, Karthik
    Yurtsever, Alp
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT III, ECML PKDD 2024, 2024, 14943 : 58 - 75
  • [4] A Frank-Wolfe Based Algorithm for Robust Discrete Optimization Under Uncertainty
    Al Dahik, Chifaa
    Al Masry, Zeina
    Chretien, Stephane
    Nicod, Jean-Marc
    Rabehasaina, Landy
    [J]. 2020 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-BESANCON 2020), 2020, : 247 - 252
  • [5] Distributed Momentum-Based Frank-Wolfe Algorithm for Stochastic Optimization
    Hou, Jie
    Zeng, Xianlin
    Wang, Gang
    Sun, Jian
    Chen, Jie
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (03) : 685 - 699
  • [6] A TIGHT UPPER BOUND ON RATE OF CONVERGENCE OF FRANK-WOLFE ALGORITHM
    CANON, MD
    CULLUM, CD
    [J]. SIAM JOURNAL ON CONTROL, 1968, 6 (04): : 509 - &
  • [7] Distributed Momentum-Based Frank-Wolfe Algorithm for Stochastic Optimization
    Jie Hou
    Xianlin Zeng
    Gang Wang
    Jian Sun
    Jie Chen
    [J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10 (03) : 685 - 699
  • [8] Online Learning for IoT Optimization: A Frank-Wolfe Adam-Based Algorithm
    Zhang, Mingchuan
    Zhou, Yangfan
    Quan, Wei
    Zhu, Junlong
    Zheng, Ruijuan
    Wu, Qingtao
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (09): : 8228 - 8237
  • [9] The Frank-Wolfe Algorithm: A Short Introduction
    Pokutta S.
    [J]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2024, 126 (1) : 3 - 35
  • [10] Adaptive Variant of the Frank-Wolfe Algorithm for Convex Optimization Problems
    Aivazian, G. V.
    Stonyakin, F. S.
    Pasechnyk, D. A.
    Alkousa, M. S.
    Raigorodsky, A. M.
    Baran, I. V.
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 2023, 49 (06) : 493 - 504