Robust matrix estimations meet Frank-Wolfe algorithm

被引:1
|
作者
Jing, Naimin [1 ,3 ]
Fang, Ethan X. X. [2 ]
Tang, Cheng Yong [1 ]
机构
[1] Temple Univ, Fox Sch Business, Dept Stat Operat & Data Sci, Philadelphia, PA 19122 USA
[2] Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
[3] Merck & Co Inc, Biostat & Res Decis Sci, Kenilworth, NJ USA
关键词
Frank-Wolfe algorithms; Huber loss; Matrix-valued parameters; Robust statistical methods; Non-asymptotic properties; Non-smooth criterion function; OPTIMAL RATES; COMPLETION;
D O I
10.1007/s10994-023-06325-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider estimating matrix-valued model parameters with a dedicated focus on their robustness. Our setting concerns large-scale structured data so that a regularization on the matrix's rank becomes indispensable. Though robust loss functions are expected to be effective, their practical implementations are known difficult due to the non-smooth criterion functions encountered in the optimizations. To meet the challenges, we develop a highly efficient computing scheme taking advantage of the projection-free Frank-Wolfe algorithms that require only the first-order derivative of the criterion function. Our methodological framework is broad, extensively accommodating robust loss functions in conjunction with penalty functions in the context of matrix estimation problems. We establish the non-asymptotic error bounds of the matrix estimations with the Huber loss and nuclear norm penalty in two concrete cases: matrix completion with partial and noisy observations and reduced-rank regressions. Our theory demonstrates the merits from using robust loss functions, so that matrix-valued estimators with good properties are achieved even when heavy-tailed distributions are involved. We illustrate the promising performance of our methods with extensive numerical examples and data analysis.
引用
收藏
页码:2723 / 2760
页数:38
相关论文
共 50 条
  • [1] Robust matrix estimations meet Frank–Wolfe algorithm
    Naimin Jing
    Ethan X. Fang
    Cheng Yong Tang
    [J]. Machine Learning, 2023, 112 : 2723 - 2760
  • [2] Federated Frank-Wolfe Algorithm
    Dadras, Ali
    Banerjee, Sourasekhar
    Prakhya, Karthik
    Yurtsever, Alp
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT III, ECML PKDD 2024, 2024, 14943 : 58 - 75
  • [3] The Frank-Wolfe Algorithm: A Short Introduction
    Pokutta S.
    [J]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2024, 126 (1) : 3 - 35
  • [4] SCALABLE ROBUST MATRIX RECOVERY: FRANK-WOLFE MEETS PROXIMAL METHODS
    Mu, Cun
    Zhang, Yuqian
    Wright, John
    Goldfarb, Donald
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A3291 - A3317
  • [5] ACCELERATING CONVERGENCE OF THE FRANK-WOLFE ALGORITHM
    WEINTRAUB, A
    ORTIZ, C
    GONZALEZ, J
    [J]. TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1985, 19 (02) : 113 - 122
  • [6] A Frank-Wolfe Based Algorithm for Robust Discrete Optimization Under Uncertainty
    Al Dahik, Chifaa
    Al Masry, Zeina
    Chretien, Stephane
    Nicod, Jean-Marc
    Rabehasaina, Landy
    [J]. 2020 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-BESANCON 2020), 2020, : 247 - 252
  • [7] ACCELERATING CONVERGENCE OF THE FRANK-WOLFE ALGORITHM.
    Weintraub, Andres
    Ortiz, Carmen
    Gonzalez, Jaime
    [J]. Transportation Research, Part B: Methodological, 1985, 19 B (02): : 113 - 122
  • [8] The Iterates of the Frank-Wolfe Algorithm May Not Converge
    Bolte, Jerome
    Combettes, Cyrille W.
    Pauwelsb, Edouard
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (04) : 2565 - 2578
  • [9] ON IMPROVING RATE OF CONVERGENCE OF FRANK-WOLFE ALGORITHM
    CANON, MD
    CULLUM, CD
    WOLFE, P
    [J]. SIAM REVIEW, 1968, 10 (04) : 470 - &
  • [10] Correcting Covariate Shift with the Frank-Wolfe Algorithm
    Wen, Junfeng
    Greiner, Russell
    Schuurmans, Dale
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 1010 - 1016