Complexity versus Agreement for Many Views Co-regularization for Multi-view Semi-supervised Learning

被引:0
|
作者
Maillard, Odalric-Ambrym [1 ]
Vayatis, Nicolas [2 ]
机构
[1] INRIA Lille Nord Europe, Sequential Learning Project, Lille, France
[2] ENS Cachan & UniverSud, CMLA UMR CNRS 8536, Cachan, France
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper considers the problem of semi-supervised multiview classification, where each view corresponds to a Reproducing Kernel Hilbert Space. An algorithm based on co-regularization methods with extra penalty terms reflecting smoothness and general agreement properties is proposed. We first provide explicit tight control on the Rademacher (L-1) complexity of the corresponding class of learners for arbitrary many views, then give the asymptotic behavior of the bounds when the co-regularization term increases, making explicit the relation between consistency of the views and reduction of the search space. Since many views involve many parameters, we third provide a parameter selection procedure, based on the stability approach with clustering and localization arguments. To this aim, we give an explicit bound on the variance (L-2-diameter) of the class of functions. Finally we illustrate the algorithm through simulations on toy examples.
引用
收藏
页码:232 / +
页数:4
相关论文
共 50 条
  • [41] Multi-view semi-supervised learning for classification on dynamic networks
    Chen, Chuan
    Li, Yuzheng
    Qian, Hui
    Zheng, Zibin
    Hu, Yanqing
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [42] Semi-supervised sparse feature selection based on multi-view Laplacian regularization
    Shi, Caijuan
    Ruan, Qiuqi
    An, Gaoyun
    Ge, Chao
    [J]. IMAGE AND VISION COMPUTING, 2015, 41 : 1 - 10
  • [43] Semi-supervised multi-view maximum entropy discrimination with expectation Laplacian regularization
    Chao, Guoqing
    Sun, Shiliang
    [J]. INFORMATION FUSION, 2019, 45 : 296 - 306
  • [44] Semi-supervised feature selection analysis with structured multi-view sparse regularization
    Shi, Caijuan
    Duan, Changyu
    Gu, Zhibin
    Tian, Qi
    An, Gaoyun
    Zhao, Ruizhen
    [J]. NEUROCOMPUTING, 2019, 330 : 412 - 424
  • [45] A Semi-Supervised Multi-View Genetic Algorithm
    Lazarova, Gergana
    Koychev, Ivan
    [J]. 2014 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION, 2014, : 87 - 91
  • [46] Multi-view semi-supervised classification overview
    Jiang, Lekang
    [J]. PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [47] Semi-supervised Multi-view Sentiment Analysis
    Lazarova, Gergana
    Koychev, Ivan
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2015), PT I, 2015, 9329 : 181 - 190
  • [48] Semi-supervised multi-view concept decomposition
    Jiang, Qi
    Zhou, Guoxu
    Zhao, Qibin
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 241
  • [49] Semi-supervised Deep Multi-view Stereo
    Xu, Hongbin
    Chen, Weitao
    Liu, Yang
    Zhou, Zhipeng
    Xiao, Haihong
    Sun, Baigui
    Xie, Xuansong
    Kang, Wenxiong
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 4616 - 4625
  • [50] Latent Multi-view Semi-Supervised Classification
    Bo, Xiaofan
    Kang, Zhao
    Zhao, Zhitong
    Su, Yuanzhang
    Chen, Wenyu
    [J]. ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 348 - 362