Semi-supervised multi-view maximum entropy discrimination with expectation Laplacian regularization

被引:39
|
作者
Chao, Guoqing [1 ]
Sun, Shiliang [1 ]
机构
[1] East China Normal Univ, Dept Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum entropy discrimination; Multi-view learning; Semi-supervised learning; Large-margin; Kernel method; REJECTIVE MULTIPLE TEST;
D O I
10.1016/j.inffus.2018.03.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised multi-view learning has attracted considerable attention and achieved great success in the machine learning field. This paper proposes a semi-supervised multi-view maximum entropy discrimination approach (SMVMED) with expectation Laplacian regularization for data classification. It takes advantage of the geometric information of the marginal distribution embedded in unlabeled data to construct a semi-supervised classifier. Different from existing methods using Laplacian regularization, we propose to use expectation Laplacian regularization for semi-supervised learning in probabilistic models. We give two implementations of SMVMED and provide their kernel variants. One of them can be relaxed and formulated as a quadratic programming problem that is solved easily. Therefore, for this implementation, we provided two versions which are approximate and exact ones. The experiments on one synthetic and multiple real-world data sets show that SMVMED demonstrates superior performance over semi-supervised single-view maximum entropy discrimination, MVMED and other state-of-the-art semi-supervised multi-view learning methods.
引用
收藏
页码:296 / 306
页数:11
相关论文
共 50 条
  • [1] Semi-supervised sparse feature selection based on multi-view Laplacian regularization
    Shi, Caijuan
    Ruan, Qiuqi
    An, Gaoyun
    Ge, Chao
    [J]. IMAGE AND VISION COMPUTING, 2015, 41 : 1 - 10
  • [2] A Multi-view Regularization Method for Semi-supervised Learning
    Wang, Jiao
    Luo, Siwei
    Li, Yan
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 444 - 449
  • [3] SEMI-SUPERVISED MULTI-SENSOR CLASSIFICATION VIA CONSENSUS-BASED MULTI-VIEW MAXIMUM ENTROPY DISCRIMINATION
    Xie, Tianpei
    Nasrabadi, Nasser M.
    Hero, Alfred O., III
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1936 - 1940
  • [4] Semi-Supervised Multi-View Clustering based on NMF with Fusion Regularization
    Cui, Guosheng
    Wang, Ruxin
    Wu, Dan
    Li, Ye
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (06)
  • [5] Semi-supervised feature selection analysis with structured multi-view sparse regularization
    Shi, Caijuan
    Duan, Changyu
    Gu, Zhibin
    Tian, Qi
    An, Gaoyun
    Zhao, Ruizhen
    [J]. NEUROCOMPUTING, 2019, 330 : 412 - 424
  • [6] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [7] A Semi-Supervised Multi-View Genetic Algorithm
    Lazarova, Gergana
    Koychev, Ivan
    [J]. 2014 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION, 2014, : 87 - 91
  • [8] Multi-view semi-supervised classification overview
    Jiang, Lekang
    [J]. PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [9] Semi-supervised Multi-view Sentiment Analysis
    Lazarova, Gergana
    Koychev, Ivan
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2015), PT I, 2015, 9329 : 181 - 190
  • [10] Semi-supervised multi-view concept decomposition
    Jiang, Qi
    Zhou, Guoxu
    Zhao, Qibin
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 241