Estimating parameters for procedural texturing by genetic algorithms

被引:8
|
作者
Qin, XJ [1 ]
Yang, YH [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Comp Graph Res Grp, Edmonton, AB T6G 2E8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
crossover; fitness measure; genetic algorithm; parametric texture model; mutation; procedural texturing; texture analysis and synthesis; texturing;
D O I
10.1006/gmod.2002.0565
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Procedural texturing has been an active research area in computer graphics with some open problems still unsolved (D. S. Ebert, F. K. Musgrave, K. P. Peachey, K. Perlin, and S. Worley, 1998, "Texturing and Modeling: A Procedural Approach," Academic Press, San Diego). One major problem is on how to estimate or recover the parameter values for a given procedural texture using the input texture image if the original parameter values are not available. In this paper, we propose a solution to this problem and present a genetic-based multiresolution parameter estimation approach. The key idea of our approach is to use an efficient search method (a genetic-based search algorithm is used in this paper) to find appropriate values of the parameters for the given procedure. During the search process, for each set of parameter values, we generate a temporary texture image using the given texturing procedure; then we compare the temporary texture image with the given target texture image to check if they match. The comparison between two texture images is done by using a multiresolution MRF texture model. The search process stops when a match is found. The estimated values of the parameters for a given procedure are the values of the parameters to the procedure to generate a texture image that matches the target texture image. Experimental results are presented to demonstrate the success of our approach. Application of our parameter estimation approach to texture synthesis is also discussed in the paper. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:19 / 39
页数:21
相关论文
共 50 条
  • [31] Local Random-Phase Noise for Procedural Texturing
    Gilet, Guillaume
    Sauvage, Basile
    Vanhoey, Kenneth
    Dischler, Jean-Michel
    Ghazanfarpour, Djamchid
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (06):
  • [32] Using genetic algorithms to optimise model parameters
    Wang, QJ
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 1997, 12 (01) : 27 - 34
  • [33] Genetic algorithms to determine JONSWAP spectra parameters
    Juan Gabriel Rueda-Bayona
    Andrés Guzmán
    Rodolfo Silva
    [J]. Ocean Dynamics, 2020, 70 : 561 - 571
  • [34] Empirical study of the interdependencies of genetic algorithms parameters
    Odetayo, MO
    [J]. 23RD EUROMICRO CONFERENCE - NEW FRONTIERS OF INFORMATION TECHNOLOGY, PROCEEDINGS, 1997, : 639 - 643
  • [35] Cellular genetic algorithms without additional parameters
    Bernabé Dorronsoro
    Pascal Bouvry
    [J]. The Journal of Supercomputing, 2013, 63 : 816 - 835
  • [36] Identification of a hysteresis model parameters with genetic algorithms
    Chwastek, Krzysztof
    Szczyglowski, Jan
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 71 (03) : 206 - 211
  • [37] Estimation of unconfined aquifer parameters by genetic algorithms
    Rajesh, M.
    Kashyap, D.
    Prasad, K. S. Hari
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2010, 55 (03): : 403 - 413
  • [38] Model parameters estimation and sensitivity by genetic algorithms
    Marseguerra, M
    Zio, E
    Podofillini, L
    [J]. ANNALS OF NUCLEAR ENERGY, 2003, 30 (14) : 1437 - 1456
  • [39] Computation of noise parameters using genetic algorithms
    Chen, HY
    Chen, KM
    Huang, GW
    Cho, MH
    Chang, CY
    [J]. 34TH EUROPEAN MICROWAVE CONFERENCE, VOLS 1-3, CONFERENCE PROCEEDINGS, 2004, : 789 - 792
  • [40] Cellular genetic algorithms without additional parameters
    Dorronsoro, Bernabe
    Bouvry, Pascal
    [J]. JOURNAL OF SUPERCOMPUTING, 2013, 63 (03): : 816 - 835