Estimating parameters for procedural texturing by genetic algorithms

被引:8
|
作者
Qin, XJ [1 ]
Yang, YH [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Comp Graph Res Grp, Edmonton, AB T6G 2E8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
crossover; fitness measure; genetic algorithm; parametric texture model; mutation; procedural texturing; texture analysis and synthesis; texturing;
D O I
10.1006/gmod.2002.0565
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Procedural texturing has been an active research area in computer graphics with some open problems still unsolved (D. S. Ebert, F. K. Musgrave, K. P. Peachey, K. Perlin, and S. Worley, 1998, "Texturing and Modeling: A Procedural Approach," Academic Press, San Diego). One major problem is on how to estimate or recover the parameter values for a given procedural texture using the input texture image if the original parameter values are not available. In this paper, we propose a solution to this problem and present a genetic-based multiresolution parameter estimation approach. The key idea of our approach is to use an efficient search method (a genetic-based search algorithm is used in this paper) to find appropriate values of the parameters for the given procedure. During the search process, for each set of parameter values, we generate a temporary texture image using the given texturing procedure; then we compare the temporary texture image with the given target texture image to check if they match. The comparison between two texture images is done by using a multiresolution MRF texture model. The search process stops when a match is found. The estimated values of the parameters for a given procedure are the values of the parameters to the procedure to generate a texture image that matches the target texture image. Experimental results are presented to demonstrate the success of our approach. Application of our parameter estimation approach to texture synthesis is also discussed in the paper. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:19 / 39
页数:21
相关论文
共 50 条
  • [21] SYNTHESIS OF ALGORITHMS FOR ESTIMATING THE PARAMETERS OF THE VERTICAL MOTION OF AN AIRCRAFT
    CHIGIN, GP
    SILAYEV, AI
    [J]. ENGINEERING CYBERNETICS, 1982, 20 (01): : 132 - 132
  • [22] Structural optimization of pseudogradient algorithms for estimating image parameters
    Tashlinskii A.G.
    [J]. Pattern Recognition and Image Analysis, 2006, 16 (2) : 218 - 222
  • [23] MODIFIED KACZMARZ ALGORITHMS FOR ESTIMATING PARAMETERS OF LINEAR PLANTS
    AVEDYAN, ED
    [J]. AUTOMATION AND REMOTE CONTROL, 1978, 39 (05) : 674 - 680
  • [24] Riemannian Online Algorithms for Estimating Mixture Model Parameters
    Zanini, Paolo
    Said, Salem
    Berthoumieu, Yannick
    Congedo, Marco
    Jutten, Christian
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 675 - 683
  • [25] Genetic algorithms for estimating the biomechanical behavior of breast tissues
    Lago, M. A.
    Ruperez, M. J.
    Martinez-Martinez, F.
    Monserrat, C.
    [J]. 2014 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI), 2014, : 760 - 763
  • [26] Procedural Video Game Scene Generation by Genetic and Neutrosophic WASPAS Algorithms
    Petrovas, Aurimas
    Bausys, Romualdas
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [27] Estimating the Evolution Direction of Populations to Improve Genetic Algorithms
    De Lucia, Andrea
    Di Penta, Massimiliano
    Oliveto, Rocco
    Panichella, Annibale
    [J]. PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, : 617 - 624
  • [28] Procedural Generation of Quests for Games Using Genetic Algorithms and Automated Planning
    de Lima, Edirlei Soares
    Feijo, Bruno
    Furtado, Antonio L.
    [J]. 2019 18TH BRAZILIAN SYMPOSIUM ON COMPUTER GAMES AND DIGITAL ENTERTAINMENT (SBGAMES 2019), 2019, : 144 - 153
  • [29] Estimating quantitative genetic parameters in haplodiploid organisms
    Liu, FH
    Smith, SM
    [J]. HEREDITY, 2000, 85 (04) : 373 - 382
  • [30] Estimating quantitative genetic parameters in haplodiploid organisms
    Fu-Hua Liu
    Sandy M Smith
    [J]. Heredity, 2000, 85 : 373 - 382