Estimating parameters for procedural texturing by genetic algorithms

被引:8
|
作者
Qin, XJ [1 ]
Yang, YH [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Comp Graph Res Grp, Edmonton, AB T6G 2E8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
crossover; fitness measure; genetic algorithm; parametric texture model; mutation; procedural texturing; texture analysis and synthesis; texturing;
D O I
10.1006/gmod.2002.0565
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Procedural texturing has been an active research area in computer graphics with some open problems still unsolved (D. S. Ebert, F. K. Musgrave, K. P. Peachey, K. Perlin, and S. Worley, 1998, "Texturing and Modeling: A Procedural Approach," Academic Press, San Diego). One major problem is on how to estimate or recover the parameter values for a given procedural texture using the input texture image if the original parameter values are not available. In this paper, we propose a solution to this problem and present a genetic-based multiresolution parameter estimation approach. The key idea of our approach is to use an efficient search method (a genetic-based search algorithm is used in this paper) to find appropriate values of the parameters for the given procedure. During the search process, for each set of parameter values, we generate a temporary texture image using the given texturing procedure; then we compare the temporary texture image with the given target texture image to check if they match. The comparison between two texture images is done by using a multiresolution MRF texture model. The search process stops when a match is found. The estimated values of the parameters for a given procedure are the values of the parameters to the procedure to generate a texture image that matches the target texture image. Experimental results are presented to demonstrate the success of our approach. Application of our parameter estimation approach to texture synthesis is also discussed in the paper. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:19 / 39
页数:21
相关论文
共 50 条
  • [1] Estimating Propensity Parameters Using Google PageRank and Genetic Algorithms
    Murrugarra, David
    Miller, Jacob
    Mueller, Alex N.
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [2] Using genetic algorithms for estimating Weibull parameters with application to wind speed
    Koca, Melih Burak
    Kilic, Muhammet Burak
    Sahin, Yusuf
    [J]. INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2020, 10 (01): : 137 - 146
  • [3] Estimating distributions in genetic algorithms
    Dikmen, O
    Akin, HL
    Alpaydin, E
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2003, 2003, 2869 : 521 - 528
  • [4] Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues
    Halter, Ryan J.
    Hartov, Alex
    Paulsen, Keith D.
    Schned, Alan
    Heaney, John
    [J]. PHYSIOLOGICAL MEASUREMENT, 2008, 29 (06) : S111 - S123
  • [5] Estimating parameters of a model of thin filament regulation in solution using genetic algorithms
    Stojanovic, B.
    Svicevic, M.
    Nedic, Dj.
    Ivanovic, M.
    Mijailovich, S. M.
    [J]. JOURNAL OF THE SERBIAN SOCIETY FOR COMPUTATIONAL MECHANICS, 2012, 6 (01) : 41 - 55
  • [6] Genetic algorithms for estimating effective parameters in a lumped reactor model for reactivity predictions
    Marseguerra, M
    Zio, E
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2001, 139 (01) : 96 - 104
  • [7] ShapeGenetics: Using Genetic Algorithms for Procedural Modeling
    Haubenwallner, Karl
    Seidel, Hans-Peter
    Steinberger, Markus
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (02) : 213 - 223
  • [8] Algorithms for estimating the parameters of factorisation machines
    Slabber, E.
    Verster, T.
    de Jongh, P. J.
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 2022, 56 (02) : 69 - 89
  • [9] Using Parallel Genetic Algorithms for Estimating Model Parameters in Complex Reactive Transport Problems
    Torlapati, Jagadish
    Clement, T. Prabhakar
    [J]. PROCESSES, 2019, 7 (10)
  • [10] Estimating photometric redshifts with genetic algorithms
    Miles, Nick
    Freitas, Alex
    Serjeant, Stephen
    [J]. GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 1593 - +