Big data-driven machine learning-enabled traffic flow prediction

被引:23
|
作者
Kong, Fanhui [1 ]
Li, Jian [1 ]
Jiang, Bin [2 ,4 ]
Zhang, Tianyuan [3 ]
Song, Houbing [3 ]
机构
[1] Tianjin Univ Technol, Sch Management, Tianjin, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
[3] Embry Riddle Aeronaut Univ, Dept Elect Comp Software & Syst Engn, Daytona Beach, FL USA
[4] Weijin Rd 92, Tianjin, Peoples R China
关键词
NEURAL-NETWORKS; SYSTEMS; MODEL;
D O I
10.1002/ett.3482
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Real-time effective traffic flow big data prediction network has important application significance. Over the past few years, traffic flow data have been exploding and we have entered the big data era. The key challenge of traffic flow prediction network is how to construct an adaptive model relying on historical data. Existing big data-driven traffic flow prediction networking approaches mainly use shallow learning, and there are unsatisfying for many realistic applications, which inspire us to rethink the traffic flow big data prediction problem with deep learning. In this paper, we propose a novel prediction approach based on machine learning. In addition to the minimum prediction error as the goal, we present the long short-term memory model, which is a typical machine learning algorithm with deep learning network. This method is applied into the real-world traffic big data from performance measurement system. Experimental results show that the proposed machine learning algorithm has more applicability and higher performance, compared with shallow machine learning prediction network.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Data-Driven Traffic Accident Analysis and Prediction Using Machine Learning Models: A Case Study of Philadelphia City
    Lyu, Chengxuan
    SEVENTH INTERNATIONAL CONFERENCE ON TRAFFIC ENGINEERING AND TRANSPORTATION SYSTEM, ICTETS 2023, 2024, 13064
  • [32] Dirty engineering data-driven inverse prediction machine learning model
    Jin-Woong Lee
    Woon Bae Park
    Byung Do Lee
    Seonghwan Kim
    Nam Hoon Goo
    Kee-Sun Sohn
    Scientific Reports, 10
  • [33] Dirty engineering data-driven inverse prediction machine learning model
    Lee, Jin-Woong
    Park, Woon Bae
    Lee, Byung Do
    Kim, Seonghwan
    Goo, Nam Hoon
    Sohn, Kee-Sun
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [34] Machine Learning Models for Data-Driven Prediction of Diabetes by Lifestyle Type
    Qin, Yifan
    Wu, Jinlong
    Xiao, Wen
    Wang, Kun
    Huang, Anbing
    Liu, Bowen
    Yu, Jingxuan
    Li, Chuhao
    Yu, Fengyu
    Ren, Zhanbing
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (22)
  • [35] Prediction of dialysis adequacy using data-driven machine learning algorithms
    Liu, Yi-Chen
    Qing, Ji-Ping
    Li, Rong
    Chang, Juan
    Xu, Li-Xia
    RENAL FAILURE, 2024, 46 (02)
  • [36] Efficient Data-Driven Machine Learning Models for Water Quality Prediction
    Dritsas, Elias
    Trigka, Maria
    COMPUTATION, 2023, 11 (02)
  • [37] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)
  • [38] Data-Driven Prediction of Complex Flow Field Over an Axisymmetric Body of Revolution Using Machine Learning
    Panda, J. P.
    Warrior, H. V.
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (06):
  • [39] Data-driven models for traffic flow at junctions
    Herty, Michael
    Kolbe, Niklas
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8946 - 8968
  • [40] Flow Reconstruction for Data-Driven Traffic Animation
    Wilkie, David
    Sewall, Jason
    Lin, Ming
    ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):