Big data-driven machine learning-enabled traffic flow prediction

被引:23
|
作者
Kong, Fanhui [1 ]
Li, Jian [1 ]
Jiang, Bin [2 ,4 ]
Zhang, Tianyuan [3 ]
Song, Houbing [3 ]
机构
[1] Tianjin Univ Technol, Sch Management, Tianjin, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin, Peoples R China
[3] Embry Riddle Aeronaut Univ, Dept Elect Comp Software & Syst Engn, Daytona Beach, FL USA
[4] Weijin Rd 92, Tianjin, Peoples R China
关键词
NEURAL-NETWORKS; SYSTEMS; MODEL;
D O I
10.1002/ett.3482
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Real-time effective traffic flow big data prediction network has important application significance. Over the past few years, traffic flow data have been exploding and we have entered the big data era. The key challenge of traffic flow prediction network is how to construct an adaptive model relying on historical data. Existing big data-driven traffic flow prediction networking approaches mainly use shallow learning, and there are unsatisfying for many realistic applications, which inspire us to rethink the traffic flow big data prediction problem with deep learning. In this paper, we propose a novel prediction approach based on machine learning. In addition to the minimum prediction error as the goal, we present the long short-term memory model, which is a typical machine learning algorithm with deep learning network. This method is applied into the real-world traffic big data from performance measurement system. Experimental results show that the proposed machine learning algorithm has more applicability and higher performance, compared with shallow machine learning prediction network.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Data-driven machine learning for accurate prediction and statistical quantification of two phase flow regimes
    Ali, Naseem
    Viggiano, Bianca
    Tutkun, Murat
    Cal, Raul Bayoan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 202
  • [22] Data-driven battery electrode production process modeling enabled by machine learning
    Tan, Changbai
    Ardanese, Raffaello
    Huemiller, Erik
    Cai, Wayne
    Yang, Houssen
    Bracey, Jennifer
    Pozzato, Gabriele
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 316
  • [23] DATA-DRIVEN FREEFORM MEMS ENERGY HARVESTER DESIGN ENABLED BY MACHINE LEARNING
    Li, Kunying
    Guo, Ruiqi
    Sui, Fanping
    Lin, Liwei
    2022 IEEE 35TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS CONFERENCE (MEMS), 2022, : 458 - 461
  • [24] Machine learning-enabled retrobiosynthesis of molecules
    Yu, Tianhao
    Boob, Aashutosh Girish
    Volk, Michael J.
    Liu, Xuan
    Cui, Haiyang
    Zhao, Huimin
    NATURE CATALYSIS, 2023, 6 (2) : 137 - 151
  • [26] Big data-driven prediction of airspace congestion
    Ayhan, Samet
    de Oliveira, Italo Romani
    Balvedi, Glaucia
    Costas, Pablo
    Leite, Alexandre
    de Azevedo, Felipe C. F.
    2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC, 2023,
  • [27] Machine Learning-enabled Adaptive Air Traffic Recommendation System for Disaster Evacuation
    Yang, Yupeng
    Zhang, Kai
    Song, Houbing
    Liu, Dahai
    2021 IEEE/AIAA 40TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2021,
  • [28] Machine Learning-Enabled Genome Mining and Bioactivity Prediction of Natural Products
    Yuan, Yujie
    Shi, Chengyou
    Zhao, Huimin
    ACS SYNTHETIC BIOLOGY, 2023, 12 (09): : 2650 - 2662
  • [29] Machine learning-enabled retrobiosynthesis of molecules
    Tianhao Yu
    Aashutosh Girish Boob
    Michael J. Volk
    Xuan Liu
    Haiyang Cui
    Huimin Zhao
    Nature Catalysis, 2023, 6 : 137 - 151
  • [30] Novel Big Data-Driven Machine Learning Models for Drug Discovery Application
    Sripriya Akondi, Vishnu
    Menon, Vineetha
    Baudry, Jerome
    Whittle, Jana
    MOLECULES, 2022, 27 (03):