Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae

被引:34
|
作者
Turner, Timothy L. [1 ,2 ]
Zhang, Guo-Chang [1 ,2 ]
Oh, Eun Joong [1 ,2 ]
Subramaniam, Vijay [2 ]
Adiputra, Andrew [3 ]
Subramaniam, Vimal [3 ]
Skory, Christopher D. [4 ]
Jang, Ji Yeon [5 ]
Yu, Byung Jo [5 ]
Park, In [5 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL USA
[2] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mol & Cellular Biol, Urbana, IL 61801 USA
[4] USDA ARS, Natl Ctr Agr Utilizat Res, RPT, 1815 N Univ St, Peoria, IL 61604 USA
[5] Korea Inst Ind Technol KITECH, Res Inst Sustainable Mfg Syst, IT Convergence Mat R&D Grp, Cheonan, South Korea
关键词
Saccharomyces cerevisiae; lactic acid; lactate dehydrogenase; cellobiose; metabolic engineering; LACTATE-DEHYDROGENASE; BIOFUEL PRODUCTION; YEAST; GENES; FERMENTATION; GLUCOSE; EVOLUTION; STRAINS; BIOMASS;
D O I
10.1002/bit.25875
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Efficient and rapid production of value-added chemicals from lignocellulosic biomass is an important step toward a sustainable society. Lactic acid, used for synthesizing the bioplastic polylactide, has been produced by microbial fermentation using primarily glucose. Lignocellulosic hydrolysates contain high concentrations of cellobiose and xylose. Here, we constructed a recombinant Saccharomyces cerevisiae strain capable of fermenting cellobiose and xylose into lactic acid. Specifically, genes (cdt-1, gh1-1, XYL1, XYL2, XYL3, and ldhA) coding for cellobiose transporter, -glucosidase, xylose reductase, xylitol dehydrogenase, xylulokinase, and lactate dehydrogenase were integrated into the S. cerevisiae chromosomes. The resulting strain produced lactic acid from cellobiose or xylose with high yields. When fermenting a cellulosic sugar mixture containing 10g/L glucose, 40g/L xylose, and 80g/L cellobiose, the engineered strain produced 83g/L of lactic acid with a yield of 0.66g lactic acid/g sugar (66% theoretical maximum). This study demonstrates initial steps toward the feasibility of sustainable production of lactic acid from lignocellulosic sugars by engineered yeast. Biotechnol. Bioeng. 2016;113: 1075-1083. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1075 / 1083
页数:9
相关论文
共 50 条
  • [1] Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion
    Turner, Timothy L.
    Zhang, Guo-Chang
    Kim, Soo Rin
    Subramaniam, Vijay
    Steffen, David
    Skory, Christopher D.
    Jang, Ji Yeon
    Yu, Byung Jo
    Jin, Yong-Su
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (19) : 8023 - 8033
  • [2] Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion
    Timothy L. Turner
    Guo-Chang Zhang
    Soo Rin Kim
    Vijay Subramaniam
    David Steffen
    Christopher D. Skory
    Ji Yeon Jang
    Byung Jo Yu
    Yong-Su Jin
    [J]. Applied Microbiology and Biotechnology, 2015, 99 : 8023 - 8033
  • [3] Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
    Aeling, Kimberly A.
    Salmon, Kirsty A.
    Laplaza, Jose M.
    Li, Ling
    Headman, Jennifer R.
    Hutagalung, Alex H.
    Picataggio, Stephen
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (11) : 1597 - 1604
  • [4] Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
    Ha, Suk-Jin
    Galazka, Jonathan M.
    Kim, Soo Rin
    Choi, Jin-Ho
    Yang, Xiaomin
    Seo, Jin-Ho
    Glass, N. Louise
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) : 504 - 509
  • [5] L-malic acid production from xylose by engineered Saccharomyces cerevisiae
    Kang, Nam Kyu
    Lee, Jae Won
    Ort, Donald R.
    Jin, Yong-Su
    [J]. BIOTECHNOLOGY JOURNAL, 2022, 17 (03)
  • [6] Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae
    Ha, Suk-Jin
    Kim, Soo Rin
    Kim, Heejin
    Du, Jing
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. BIORESOURCE TECHNOLOGY, 2013, 149 : 525 - 531
  • [7] Enhanced Isoprenoid Production from Xylose by Engineered Saccharomyces cerevisiae
    Kwak, Suryang
    Kim, Soo Rin
    Xu, Haiqing
    Zhang, Guo-Chang
    Lane, Stephan
    Kim, Heejin
    Jin, Yong-Su
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (11) : 2581 - 2591
  • [8] Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae
    Oh, Eun Joong
    Ha, Suk-Jin
    Kim, Soo Rin
    Lee, Won-Heong
    Galazka, Jonathan M.
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. METABOLIC ENGINEERING, 2013, 15 : 226 - 234
  • [9] D-lactic acid production by metabolically engineered Saccharomyces cerevisiae
    Ishida, N
    Suzuki, T
    Tokuhiro, K
    Nagamori, E
    Onishi, T
    Saitoh, S
    Kitamoto, K
    Takahashi, H
    [J]. JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2006, 101 (02) : 172 - 177
  • [10] 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae
    Nan, Hong
    Seo, Seung-Oh
    Oh, Eun Joong
    Seo, Jin-Ho
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (12) : 5757 - 5764