Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae

被引:34
|
作者
Turner, Timothy L. [1 ,2 ]
Zhang, Guo-Chang [1 ,2 ]
Oh, Eun Joong [1 ,2 ]
Subramaniam, Vijay [2 ]
Adiputra, Andrew [3 ]
Subramaniam, Vimal [3 ]
Skory, Christopher D. [4 ]
Jang, Ji Yeon [5 ]
Yu, Byung Jo [5 ]
Park, In [5 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL USA
[2] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mol & Cellular Biol, Urbana, IL 61801 USA
[4] USDA ARS, Natl Ctr Agr Utilizat Res, RPT, 1815 N Univ St, Peoria, IL 61604 USA
[5] Korea Inst Ind Technol KITECH, Res Inst Sustainable Mfg Syst, IT Convergence Mat R&D Grp, Cheonan, South Korea
关键词
Saccharomyces cerevisiae; lactic acid; lactate dehydrogenase; cellobiose; metabolic engineering; LACTATE-DEHYDROGENASE; BIOFUEL PRODUCTION; YEAST; GENES; FERMENTATION; GLUCOSE; EVOLUTION; STRAINS; BIOMASS;
D O I
10.1002/bit.25875
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Efficient and rapid production of value-added chemicals from lignocellulosic biomass is an important step toward a sustainable society. Lactic acid, used for synthesizing the bioplastic polylactide, has been produced by microbial fermentation using primarily glucose. Lignocellulosic hydrolysates contain high concentrations of cellobiose and xylose. Here, we constructed a recombinant Saccharomyces cerevisiae strain capable of fermenting cellobiose and xylose into lactic acid. Specifically, genes (cdt-1, gh1-1, XYL1, XYL2, XYL3, and ldhA) coding for cellobiose transporter, -glucosidase, xylose reductase, xylitol dehydrogenase, xylulokinase, and lactate dehydrogenase were integrated into the S. cerevisiae chromosomes. The resulting strain produced lactic acid from cellobiose or xylose with high yields. When fermenting a cellulosic sugar mixture containing 10g/L glucose, 40g/L xylose, and 80g/L cellobiose, the engineered strain produced 83g/L of lactic acid with a yield of 0.66g lactic acid/g sugar (66% theoretical maximum). This study demonstrates initial steps toward the feasibility of sustainable production of lactic acid from lignocellulosic sugars by engineered yeast. Biotechnol. Bioeng. 2016;113: 1075-1083. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1075 / 1083
页数:9
相关论文
共 50 条
  • [31] Lactic Acid Production from a Whole Slurry of Acid-Pretreated Spent Coffee Grounds by Engineered Saccharomyces cerevisiae
    Jeong-won Kim
    Jeong Hwa Jang
    Hyeon Jin Yeo
    Jeongman Seol
    Soo Rin Kim
    Young Hoon Jung
    [J]. Applied Biochemistry and Biotechnology, 2019, 189 : 206 - 216
  • [32] Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain
    Ha, Suk-Jin
    Wei, Qiaosi
    Kim, Soo Rin
    Galazka, Jonathan M.
    Cate, Jamie
    Jin, Yong-Su
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (16) : 5822 - 5825
  • [33] L-Lactic Acid Production Using Engineered Saccharomyces cerevisiae with Improved Organic Acid Tolerance
    Jang, Byeong-Kwan
    Ju, Yebin
    Jeong, Deokyeol
    Jung, Sung-Keun
    Kim, Chang-Kil
    Chung, Yong-Suk
    Kim, Soo-Rin
    [J]. JOURNAL OF FUNGI, 2021, 7 (11)
  • [34] Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae
    Zhao, Yujia
    Fan, Jingjing
    Wang, Chen
    Feng, Xudong
    Li, Chun
    [J]. BIORESOURCE TECHNOLOGY, 2018, 257 : 339 - 343
  • [35] Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae
    Zhao, Yunying
    Zuo, Fangyu
    Shu, Quanxian
    Yang, Xiaoyan
    Deng, Yu
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2023, 89 (06) : e0053523
  • [36] Optimization of CDT-1 and XYL1 Expression for Balanced Co-Production of Ethanol and Xylitol from Cellobiose and Xylose by Engineered Saccharomyces cerevisiae
    Zha, Jian
    Li, Bing-Zhi
    Shen, Ming-Hua
    Hu, Meng-Long
    Song, Hao
    Yuan, Ying-Jin
    [J]. PLOS ONE, 2013, 8 (07):
  • [37] Application of metabolically engineered Saccharomyces cerevisiae to extractive lactic acid fermentation
    Gao, Min-Tian
    Shimamura, Takashi
    Ishida, Nobuhiro
    Takahashi, Haruo
    [J]. BIOCHEMICAL ENGINEERING JOURNAL, 2009, 44 (2-3) : 251 - 255
  • [38] Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose
    Liu, Jing-Jing
    Zhang, Guo-Chang
    Oh, Eun Joong
    Pathanibul, Panchalee
    Turner, Timothy L.
    Jin, Yong-Su
    [J]. JOURNAL OF BIOTECHNOLOGY, 2016, 234 : 99 - 104
  • [39] Vitamin A Production by Engineered Saccharomyces cerevisiae from Xylose via Two-Phase in Situ Extraction
    Sun, Liang
    Kwak, Suryang
    Jin, Yong-Su
    [J]. ACS SYNTHETIC BIOLOGY, 2019, 8 (09): : 2131 - 2140
  • [40] Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae
    Laura Salusjärvi
    Mervi Toivari
    Maija-Leena Vehkomäki
    Outi Koivistoinen
    Dominik Mojzita
    Klaus Niemelä
    Merja Penttilä
    Laura Ruohonen
    [J]. Applied Microbiology and Biotechnology, 2017, 101 : 8151 - 8163