Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae

被引:69
|
作者
Oh, Eun Joong [1 ,2 ]
Ha, Suk-Jin [1 ,2 ,5 ]
Kim, Soo Rin [1 ,2 ]
Lee, Won-Heong [1 ,2 ]
Galazka, Jonathan M. [3 ]
Cate, Jamie H. D. [3 ,4 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Phys Biosci Div, Berkeley, CA 94720 USA
[5] Kangwon Natl Univ, Dept Bioengn & Technol, Chunchon, South Korea
关键词
Xylitol; Co-utilization; Cellobiose; Cellodextrin transporter; Cofactor regeneration; REDUCTASE GENE; YEAST; EXPRESSION; TRANSPORT; NADPH; FERMENTATION; COSUBSTRATE; GLUCOSE; ETHANOL; XYL1;
D O I
10.1016/j.ymben.2012.09.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
As Saccharomyces cerevisiae cannot utilize xylose as a carbon source, expression of XYL1 coding for xylose reductase (XR) from Scheffersomyces (Pichia) stipitis enabled production of xylitol from xylose with a high yield. However, insufficient supply of NAD(P)H for XR and inhibition of xylose uptake by glucose are identified as major constraints for achieving high xylitol productivity. To overcome these problems, we engineered S. cerevisiae capable of converting xylose into xylitol through simultaneous utilization of xylose and cellobiose. An engineered S. cerevisiae (D-10-BT) expressing XR, cellodextrin transporter (cdt-1) and intracellular beta-glucosidase (gh1-1) produced xylitol via simultaneous utilization of cellobiose and xylose. The D-10-BT strain exhibited 40% higher volumetric xylitol productivity with co-consumption of cellobiose and xylose compared to sequential utilization of glucose and xylose. Furthermore, the overexpression of S. cerevisiae ALD6, IDP2, or S. stipitis ZWF1 coding for cytosolic NADP(+)-dependent dehydrogenases increased the intracellular NADPH availability of the D-10-BT strain, which resulted in a 37-63% improvement in xylitol productivity when cellobiose and xylose were co-consumed. These results suggest that co-utilization of cellobiose and xylose can lead to improved xylitol production through enhanced xylose uptake and efficient cofactor regeneration. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 234
页数:9
相关论文
共 50 条
  • [1] High temperature xylitol production through simultaneous co-utilization of glucose and xylose by engineered Kluyveromyces marxianus
    Zhang, Biao
    Ren, Lili
    Zhao, Zepeng
    Zhang, Siyang
    Xu, Dayong
    Zeng, Xin
    Li, Feng
    [J]. BIOCHEMICAL ENGINEERING JOURNAL, 2021, 165
  • [2] Engineered Escherichia coli capable of co-utilization of cellobiose and xylose
    Vinuselvi, Parisutham
    Lee, Sung Kuk
    [J]. ENZYME AND MICROBIAL TECHNOLOGY, 2012, 50 (01) : 1 - 4
  • [3] Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
    Ha, Suk-Jin
    Galazka, Jonathan M.
    Kim, Soo Rin
    Choi, Jin-Ho
    Yang, Xiaomin
    Seo, Jin-Ho
    Glass, N. Louise
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) : 504 - 509
  • [4] Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
    Aeling, Kimberly A.
    Salmon, Kirsty A.
    Laplaza, Jose M.
    Li, Ling
    Headman, Jennifer R.
    Hutagalung, Alex H.
    Picataggio, Stephen
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (11) : 1597 - 1604
  • [5] Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose
    Hou, Jin
    Qiu, Chenxi
    Shen, Yu
    Li, Hongxing
    Bao, Xiaoming
    [J]. FEMS YEAST RESEARCH, 2017, 17 (04)
  • [6] Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae
    Ha, Suk-Jin
    Kim, Soo Rin
    Kim, Heejin
    Du, Jing
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. BIORESOURCE TECHNOLOGY, 2013, 149 : 525 - 531
  • [7] Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae
    Turner, Timothy L.
    Zhang, Guo-Chang
    Oh, Eun Joong
    Subramaniam, Vijay
    Adiputra, Andrew
    Subramaniam, Vimal
    Skory, Christopher D.
    Jang, Ji Yeon
    Yu, Byung Jo
    Park, In
    Jin, Yong-Su
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (05) : 1075 - 1083
  • [8] An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization
    Fox, Jerome M.
    Levine, Seth E.
    Blanch, Harvey W.
    Clark, Douglas S.
    [J]. BIOTECHNOLOGY JOURNAL, 2012, 7 (03) : 361 - 373
  • [9] Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
    Amanda Reider Apel
    Mario Ouellet
    Heather Szmidt-Middleton
    Jay D. Keasling
    Aindrila Mukhopadhyay
    [J]. Scientific Reports, 6
  • [10] Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
    Apel, Amanda Reider
    Ouellet, Mario
    Szmidt-Middleton, Heather
    Keasling, Jay D.
    Mukhopadhyay, Aindrila
    [J]. SCIENTIFIC REPORTS, 2016, 6