Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae

被引:69
|
作者
Oh, Eun Joong [1 ,2 ]
Ha, Suk-Jin [1 ,2 ,5 ]
Kim, Soo Rin [1 ,2 ]
Lee, Won-Heong [1 ,2 ]
Galazka, Jonathan M. [3 ]
Cate, Jamie H. D. [3 ,4 ]
Jin, Yong-Su [1 ,2 ]
机构
[1] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[2] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Phys Biosci Div, Berkeley, CA 94720 USA
[5] Kangwon Natl Univ, Dept Bioengn & Technol, Chunchon, South Korea
关键词
Xylitol; Co-utilization; Cellobiose; Cellodextrin transporter; Cofactor regeneration; REDUCTASE GENE; YEAST; EXPRESSION; TRANSPORT; NADPH; FERMENTATION; COSUBSTRATE; GLUCOSE; ETHANOL; XYL1;
D O I
10.1016/j.ymben.2012.09.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
As Saccharomyces cerevisiae cannot utilize xylose as a carbon source, expression of XYL1 coding for xylose reductase (XR) from Scheffersomyces (Pichia) stipitis enabled production of xylitol from xylose with a high yield. However, insufficient supply of NAD(P)H for XR and inhibition of xylose uptake by glucose are identified as major constraints for achieving high xylitol productivity. To overcome these problems, we engineered S. cerevisiae capable of converting xylose into xylitol through simultaneous utilization of xylose and cellobiose. An engineered S. cerevisiae (D-10-BT) expressing XR, cellodextrin transporter (cdt-1) and intracellular beta-glucosidase (gh1-1) produced xylitol via simultaneous utilization of cellobiose and xylose. The D-10-BT strain exhibited 40% higher volumetric xylitol productivity with co-consumption of cellobiose and xylose compared to sequential utilization of glucose and xylose. Furthermore, the overexpression of S. cerevisiae ALD6, IDP2, or S. stipitis ZWF1 coding for cytosolic NADP(+)-dependent dehydrogenases increased the intracellular NADPH availability of the D-10-BT strain, which resulted in a 37-63% improvement in xylitol productivity when cellobiose and xylose were co-consumed. These results suggest that co-utilization of cellobiose and xylose can lead to improved xylitol production through enhanced xylose uptake and efficient cofactor regeneration. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 234
页数:9
相关论文
共 50 条
  • [31] Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase
    Kim, Heejin
    Oh, Eun Joong
    Lane, Stephan Thomas
    Lee, Won-Heong
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. JOURNAL OF BIOTECHNOLOGY, 2018, 275 : 53 - 59
  • [32] Minimize the Xylitol Production in Saccharomyces cerevisiae by Balancing the Xylose Redox Metabolic Pathway
    Zhu, Yixuan
    Zhang, Jingtao
    Zhu, Lang
    Jia, Zefang
    Li, Qi
    Xiao, Wei
    Cao, Limin
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [33] Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase
    Watanabe, Seiya
    Abu Saleh, Ahmed
    Pack, Seung Pil
    Annaluru, Narayana
    Kodaki, Tsutomu
    Makino, Keisuke
    [J]. JOURNAL OF BIOTECHNOLOGY, 2007, 130 (03) : 316 - 319
  • [34] Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production
    Huang, Mengtian
    Cui, Xinxin
    Zhang, Peining
    Jin, Zhuocheng
    Li, Huanan
    Liu, Jiashu
    Jiang, Zhengbing
    [J]. PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2024, 54 (08): : 1058 - 1067
  • [35] Enhanced Bioconversion of Cellobiose by Industrial Saccharomyces cerevisiae Used for Cellulose Utilization
    Hu, Meng-Long
    Zha, Jian
    He, Lin-Wei
    Lv, Ya-Jin
    Shen, Ming-Hua
    Zhong, Cheng
    Li, Bing-Zhi
    Yuan, Ying-Jin
    [J]. FRONTIERS IN MICROBIOLOGY, 2016, 7
  • [36] Simultaneous Utilization of Cellobiose, Xylose, and Acetic Acid from Lignocellulosic Biomass for Biofuel Production by an Engineered Yeast Platform
    Wei, Na
    Oh, Eun Joong
    Million, Gyver
    Cate, Jamie H. D.
    Jin, Yong-Su
    [J]. ACS SYNTHETIC BIOLOGY, 2015, 4 (06): : 707 - 713
  • [37] Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization
    Madhavan, Anjali
    Tamalampudi, Sriappareddy
    Srivastava, Aradhana
    Fukuda, Hideki
    Bisaria, Virendra S.
    Kondo, Akihiko
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 82 (06) : 1037 - 1047
  • [38] Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization
    Anjali Madhavan
    Sriappareddy Tamalampudi
    Aradhana Srivastava
    Hideki Fukuda
    Virendra S. Bisaria
    Akihiko Kondo
    [J]. Applied Microbiology and Biotechnology, 2009, 82 : 1037 - 1047
  • [39] Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation
    Lee, Won-Heong
    Jin, Yong-Su
    [J]. JOURNAL OF BIOTECHNOLOGY, 2017, 245 : 1 - 8
  • [40] New genotypes of industrial yeast Saccharomyces cerevisiae engineered with YXI and heterologous xylose transporters improve xylose utilization and ethanol production
    Moon, Jaewoong
    Liu, Z. Lewis
    Ma, Menggen
    Slininger, Patricia J.
    [J]. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2013, 2 (03) : 247 - 254