Graph Convolutional Networks for Text Classification

被引:0
|
作者
Yao, Liang [1 ]
Mao, Chengsheng [1 ]
Luo, Yuan [1 ]
机构
[1] Northwestern Univ, Chicago, IL 60611 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.
引用
收藏
页码:7370 / 7377
页数:8
相关论文
共 50 条
  • [21] On the Interpretation of Convolutional Neural Networks for Text Classification
    Xu, Jincheng
    Du, Qingfeng
    [J]. ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2252 - 2259
  • [22] Hierarchical Convolutional Attention Networks for Text Classification
    Gao, Shang
    Ramanathan, Arvind
    Tourassi, Georgia
    [J]. REPRESENTATION LEARNING FOR NLP, 2018, : 11 - 23
  • [23] Very Deep Convolutional Networks for Text Classification
    Conneau, Alexis
    Schwenk, Holger
    Le Cun, Yann
    Barrault, Loic
    [J]. 15TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2017), VOL 1: LONG PAPERS, 2017, : 1107 - 1116
  • [24] Recurrent Convolutional Neural Networks for Text Classification
    Lai, Siwei
    Xu, Liheng
    Liu, Kang
    Zhao, Jun
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2267 - 2273
  • [25] Convolutional Recurrent Neural Networks for Text Classification
    Wang, Ruishuang
    Li, Zhao
    Cao, Jian
    Chen, Tong
    Wang, Lei
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [26] Convolutional Recurrent Neural Networks for Text Classification
    Lyu, Shengfei
    Liu, Jiaqi
    [J]. JOURNAL OF DATABASE MANAGEMENT, 2021, 32 (04) : 65 - 82
  • [27] Hierarchical Graph Convolutional Networks for Image Classification
    Batisteli, João Pedro Oliveira
    Guimarães, Silvio Jamil Ferzoli
    do Patrocínio Júnior, Zenilton Kleber Gonçalves
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 14196 LNAI : 63 - 76
  • [28] Graph Convolutional Networks for Hyperspectral Image Classification
    Hong, Danfeng
    Gao, Lianru
    Yao, Jing
    Zhang, Bing
    Plaza, Antonio
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 5966 - 5978
  • [29] Fundamental Limits of Deep Graph Convolutional Networks for Graph Classification
    Magner, Abram
    Baranwal, Mayank
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3218 - 3233
  • [30] Recurrent Graph Neural Networks for Text Classification
    Wei, Xinde
    Huang, Hai
    Ma, Longxuan
    Yang, Ze
    Xu, Liutong
    [J]. PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 91 - 97