Graph Convolutional Networks for Hyperspectral Image Classification

被引:1136
|
作者
Hong, Danfeng [1 ]
Gao, Lianru [2 ]
Yao, Jing [3 ]
Zhang, Bing [2 ,4 ]
Plaza, Antonio [5 ]
Chanussot, Jocelyn [6 ,7 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[4] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[5] Univ Extremadura, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Escuela Politecn, Caceres 10003, Spain
[6] Univ Grenoble Alpes, CNRS, INRIA, LJK,Grenoble INP, F-38000 Grenoble, France
[7] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Hyperspectral imaging; Task analysis; Symmetric matrices; Fourier transforms; Hyperspectral (HS) classification; convolutional neural networks (CNNs); graph convolutional networks (GCNs); deep learning (DL); fusion; FRAMEWORK;
D O I
10.1109/TGRS.2020.3015157
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural networks (CNNs) have been attracting increasing attention in hyperspectral (HS) image classification due to their ability to capture spatial-spectral feature representations. Nevertheless, their ability in modeling relations between the samples remains limited. Beyond the limitations of grid sampling, graph convolutional networks (GCNs) have been recently proposed and successfully applied in irregular (or nongrid) data representation and analysis. In this article, we thoroughly investigate CNNs and GCNs (qualitatively and quantitatively) in terms of HS image classification. Due to the construction of the adjacency matrix on all the data, traditional GCNs usually suffer from a huge computational cost, particularly in large-scale remote sensing (RS) problems. To this end, we develop a new minibatch GCN (called miniGCN hereinafter), which allows to train large-scale GCNs in a minibatch fashion. More significantly, our miniGCN is capable of inferring out-of-sample data without retraining networks and improving classification performance. Furthermore, as CNNs and GCNs can extract different types of HS features, an intuitive solution to break the performance bottleneck of a single model is to fuse them. Since miniGCNs can perform batchwise network training (enabling the combination of CNNs and GCNs), we explore three fusion strategies: additive fusion, elementwise multiplicative fusion, and concatenation fusion to measure the obtained performance gain. Extensive experiments, conducted on three HS data sets, demonstrate the advantages of miniGCNs over GCNs and the superiority of the tested fusion strategies with regard to the single CNN or GCN models. The codes of this work will be available at https://github.com/danfenghong/IEEE_TGRS_GCN for the sake of reproducibility.
引用
收藏
页码:5966 / 5978
页数:13
相关论文
共 50 条
  • [1] Nonlocal Graph Convolutional Networks for Hyperspectral Image Classification
    Mou, Lichao
    Lu, Xiaoqiang
    Li, Xuelong
    Zhu, Xiao Xiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (12): : 8246 - 8257
  • [2] Automatic Graph Learning Convolutional Networks for Hyperspectral Image Classification
    Chen, Jie
    Jiao, Licheng
    Liu, Xu
    Li, Lingling
    Liu, Fang
    Yang, Shuyuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Dual Interactive Graph Convolutional Networks for Hyperspectral Image Classification
    Wan, Sheng
    Pan, Shirui
    Zhong, Ping
    Chang, Xiaojun
    Yang, Jian
    Gong, Chen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] GRAPH-BASED DEEP CONVOLUTIONAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Cao, Jiayan
    Chen, Zhao
    Wang, Bin
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3270 - 3273
  • [5] Graph-in-Graph Convolutional Network for Hyperspectral Image Classification
    Jia, Sen
    Jiang, Shuguo
    Zhang, Shuyu
    Xu, Meng
    Jia, Xiuping
    [J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (01) : 1157 - 1171
  • [6] Spectral-Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification
    Qin, Anyong
    Shang, Zhaowei
    Tian, Jinyu
    Wang, Yulong
    Zhang, Taiping
    Tang, Yuan Yan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (02) : 241 - 245
  • [7] CROSS-DOMAIN HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON GRAPH CONVOLUTIONAL NETWORKS
    Li, Yushan
    Ye, Minchao
    Qian, Yuntao
    Qian, Qipeng
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5974 - 5977
  • [8] Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
    Zhang, Minghua
    Luo, Hongling
    Song, Wei
    Mei, Haibin
    Su, Cheng
    [J]. REMOTE SENSING, 2021, 13 (21)
  • [9] Hyperspectral Image Classification With Contrastive Graph Convolutional Network
    Yu, Wentao
    Wan, Sheng
    Li, Guangyu
    Yang, Jian
    Gong, Chen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Semisupervised graph convolutional network for hyperspectral image classification
    Liu, Bing
    Gao, Kuiliang
    Yu, Anzhu
    Guo, Wenyue
    Wang, Ruirui
    Zuo, Xibing
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):