Sums of powers of binomial coefficients via Legendre polynomials

被引:0
|
作者
Gould, HW [1 ]
机构
[1] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Define S-n(p,x) = Sigma(n) ((n)(k))(p) x(k), where n greater than or equal to 0, (k=0) Then it is well-known that S-n (1,x), S-n (2,1), S-n (2,-1), and S-n (3,-1) can be exhibited in closed form. The formula S-2n (3,-1) = (-1)(n) ((2n)(n)) ((3n)(n)) was discovered by A. C. Dixon in 1891. L. Carlitz [Mathematics Magazine, Vol. 32(1958), 47-48] posed the formulas S-n (3,1) = ((x(n))) (1-x(2))(n) P-n((1+x)(1-x)) and S-n (4,1) = ((X-n)) (1-x)(2n) {P-n((1+X)(1-x))}(2), where ((x(n))) f(x) means the coefficient of x(n) in the series expansion of f(x). We use Legendre polynomials to get the analogous formulas S-n(3,-1) = ((x(n))) (1-x)(2n) P-n((1+x)(1-x)), and S-n (5,1) = ((x(n))) (1-x)(n) P-n ((1+x)(1-x)) S-n (3, x). We obtain some partial results for S-n (p,x) when p is arbitrary, and also give a new proof of Dixon's formula.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
  • [41] Sums of powers of Fibonacci polynomials
    Helmut Prodinger
    [J]. Proceedings - Mathematical Sciences, 2009, 119 : 567 - 570
  • [42] Sums of powers of Fibonacci polynomials
    Prodinger, Helmut
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (05): : 567 - 570
  • [43] On sums of powers of zeros of polynomials
    Lang, W
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 89 (02) : 237 - 256
  • [44] Factors of sums involving q-binomial coefficients and powers of q-integers
    Guo, Victor J. W.
    Wang, Su-Dan
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (10) : 1670 - 1679
  • [45] Binomial Sums with Pell and Lucas Polynomials
    Guo, Dongwei
    Chu, Wenchang
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2021, 28 (01) : 133 - 145
  • [46] ON ALTERNATING SUMS OF BINOMIAL AND q-BINOMIAL COEFFICIENTS
    El Bachraoui, Mohamed
    [J]. ARS COMBINATORIA, 2020, 151 : 257 - 272
  • [47] Fibonacci polynomials and binomial coefficients
    Seiffert, HJ
    [J]. FIBONACCI QUARTERLY, 2004, 42 (01): : 93 - 94
  • [48] Fractional Sums and Differences with Binomial Coefficients
    Abdeljawad, Thabet
    Baleanu, Dumitru
    Jarad, Fahd
    Agarwal, Ravi P.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [49] An identity with sums of products of binomial coefficients
    Ohtsuka, Hideyuki
    [J]. FIBONACCI QUARTERLY, 2019, 57 (03): : 285 - 285
  • [50] CERTAIN BINOMIAL SUMS WITH RECURSIVE COEFFICIENTS
    Kilic, Emrah
    Ionascu, Eugen J.
    [J]. FIBONACCI QUARTERLY, 2010, 48 (02): : 161 - 167