A hybrid index for temporal big data

被引:5
|
作者
Wang, Mei [1 ]
Xiao, Meng [1 ]
Peng, Sancheng [2 ,3 ]
Liu, Guohua [1 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510420, Guangdong, Peoples R China
[3] Guangdong Univ Foreign Studies, Lab Language Engn & Comp, Guangzhou 510420, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Big data; Temporal database; Temporal index; SHB plus -Tree index; Segmented storage;
D O I
10.1016/j.future.2016.08.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Temporal index provides an important way to accelerate query performance in temporal big data. However, the current temporal index cannot support the variety of queries very well, and it is hard to take account of the efficiency of query execution as well as the index construction and maintenance. In this paper, we propose a novel segmentation-based hybrid index B+-Tree, called SHB+-tree, for temporal big data. First, the temporal data in temporal table deposited is separated to fragments according to the time order. In each segment, the hybrid index is constructed by integrating the temporal index and the object index, and the temporal big data is shared by them. The performance of construction and maintenance is improved by employing the segmented storage strategy and bottom-up index construction approaches for every part of the hybrid index. The experimental results on benchmark data set verify the effectiveness and efficiency of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:264 / 272
页数:9
相关论文
共 50 条
  • [41] PISA: an Index for Aggregating Big Time Series Data
    Huang, Xiangdong
    Wang, Jianmin
    Wong, Raymond K.
    Zhang, Jinrui
    Wang, Chen
    [J]. CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 979 - 988
  • [42] A Survey of Bitmap Index Compression Algorithms for Big Data
    Chen, Zhen
    Wen, Yuhao
    Cao, Junwei
    Zheng, Wenxun
    Chang, Jiahui
    Wu, Yinjun
    Ma, Ge
    Hakmaoui, Mourad
    Peng, Guodong
    [J]. TSINGHUA SCIENCE AND TECHNOLOGY, 2015, 20 (01) : 100 - 115
  • [43] Big Data Readiness Index - Africa in the Age of Analytics
    Joubert, Anke
    Murawski, Matthias
    Bick, Markus
    [J]. DIGITAL TRANSFORMATION FOR A SUSTAINABLE SOCIETY IN THE 21ST CENTURY, 2019, 11701 : 101 - 112
  • [44] Building a spatiotemporal index for Earth Observation Big Data
    Xia, Jizhe
    Yang, Chaowei
    Li, Qingquan
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 245 - 252
  • [45] Research on Index Compilation Method of Integrating Big Data
    Mei Yiduo
    Jing Zhucui
    Liu Jing
    [J]. PROCEEDINGS OF INTERNATIONAL SYMPOSIUM - MANAGEMENT, INNOVATION & DEVELOPMENT (MID2014), 2014, : 445 - 450
  • [46] A Survey of Bitmap Index Compression Algorithms for Big Data
    Zhen Chen
    Yuhao Wen
    Junwei Cao
    Wenxun Zheng
    Jiahui Chang
    Yinjun Wu
    Ge Ma
    Mourad Hakmaoui
    Guodong Peng
    [J]. Tsinghua Science and Technology, 2015, 20 (01) : 100 - 115
  • [47] Brewing Big Data: The Tea-Bag Index
    Ogden, Lesley Evans
    [J]. BIOSCIENCE, 2017, 67 (07) : 680 - 680
  • [48] Data Processing Model to Perform Big Data Analytics in Hybrid Infrastructures
    Dos Anjos, Julio C. S.
    Matteussi, Kassiano J.
    De Souza, Paulo R. R., Jr.
    Grabher, Gabriel J. A.
    Borges, Guilherme A.
    Barbosa, Jorge L. V.
    Gonzalez, Gabriel V.
    Leithardt, Valderi R. Q.
    Geyer, Claudio F. R.
    [J]. IEEE ACCESS, 2020, 8 : 170281 - 170294
  • [49] A Hybrid Technique for Enhancing Data Integrity in Big Data Transmission Environment
    Bhattacharjee, Shiladitya
    Rahim, Lukman Bin Ab
    Zakaria, M. Nordin B.
    Aziz, Izzatdin Bin Ab
    [J]. 2018 4TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2018,
  • [50] Data-Aware Support for Hybrid HPC and Big Data Applications
    Caino-Lores, Silvina
    Isaila, Florin
    Carretero, Jesus
    [J]. 2017 17TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2017, : 719 - 722