A hybrid index for temporal big data

被引:5
|
作者
Wang, Mei [1 ]
Xiao, Meng [1 ]
Peng, Sancheng [2 ,3 ]
Liu, Guohua [1 ]
机构
[1] Donghua Univ, Sch Comp Sci & Technol, Shanghai 201620, Peoples R China
[2] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510420, Guangdong, Peoples R China
[3] Guangdong Univ Foreign Studies, Lab Language Engn & Comp, Guangzhou 510420, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Big data; Temporal database; Temporal index; SHB plus -Tree index; Segmented storage;
D O I
10.1016/j.future.2016.08.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Temporal index provides an important way to accelerate query performance in temporal big data. However, the current temporal index cannot support the variety of queries very well, and it is hard to take account of the efficiency of query execution as well as the index construction and maintenance. In this paper, we propose a novel segmentation-based hybrid index B+-Tree, called SHB+-tree, for temporal big data. First, the temporal data in temporal table deposited is separated to fragments according to the time order. In each segment, the hybrid index is constructed by integrating the temporal index and the object index, and the temporal big data is shared by them. The performance of construction and maintenance is improved by employing the segmented storage strategy and bottom-up index construction approaches for every part of the hybrid index. The experimental results on benchmark data set verify the effectiveness and efficiency of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:264 / 272
页数:9
相关论文
共 50 条
  • [31] Expanding ParaSQL for spatio-temporal (big) data
    Sugam Sharma
    Shashi Gadia
    [J]. The Journal of Supercomputing, 2019, 75 : 587 - 606
  • [32] Temporal Event Tracing on Big Healthcare Data Analytics
    Lin, Chin-Ho
    Huang, Liang-Cheng
    Chou, Seng-Cho T.
    Liu, Chih-Ho
    Cheng, Han-Fang
    Chiang, I-Jen
    [J]. 2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 281 - 287
  • [33] ITISS: an efficient framework for querying big temporal data
    Zhongpu Chen
    Bin Yao
    Zhi-Jie Wang
    Wei Zhang
    Kai Zheng
    Panos Kalnis
    Feilong Tang
    [J]. GeoInformatica, 2020, 24 : 27 - 59
  • [34] Expanding ParaSQL for spatio-temporal (big) data
    Sharma, Sugam
    Gadia, Shashi
    [J]. JOURNAL OF SUPERCOMPUTING, 2019, 75 (02): : 587 - 606
  • [35] Spatial and temporal epidemiological analysis in the Big Data era
    Pfeiffer, Dirk U.
    Stevens, Kim B.
    [J]. PREVENTIVE VETERINARY MEDICINE, 2015, 122 (1-2) : 213 - 220
  • [36] Temporal Trends in AKI: Insights from Big Data
    Nadkarni, Girish N.
    Coca, Steven G.
    [J]. CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2016, 11 (01): : 1 - 3
  • [37] Distributed In-Memory Analytics for Big Temporal Data
    Yao, Bin
    Zhang, Wei
    Wang, Zhi-Jie
    Chen, Zhongpu
    Shang, Shuo
    Zheng, Kai
    Guo, Minyi
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2018, PT I, 2018, 10827 : 549 - 565
  • [38] ITISS: an efficient framework for querying big temporal data
    Chen, Zhongpu
    Yao, Bin
    Wang, Zhi-Jie
    Zhang, Wei
    Zheng, Kai
    Kalnis, Panos
    Tang, Feilong
    [J]. GEOINFORMATICA, 2020, 24 (01) : 27 - 59
  • [39] Cartography in the Age of Spatio-temporal Big Data
    [J]. 2017, SinoMaps Press (46):
  • [40] Hybrid index for spatio-temporal OLAP operations
    You, Byeong-Seob
    Lee, Dong-Wook
    Eo, Sang-Hun
    Lee, Jae-Dong
    Bae, Hae-Young
    [J]. ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2006, 4243 : 110 - 118