Comprehensive Multilayer Convolutional Neural Network for Plant Disease Detection

被引:0
|
作者
Bhagwat, Radhika [1 ,2 ]
Dandawate, Yogesh [3 ]
机构
[1] Savitribai Phule Pune Univ, Dept Technol, Pune, Maharashtra, India
[2] MKSSSs Cummins Coll Engn Women, Dept Informat Technol, Pune, Maharashtra, India
[3] Vishwaskarma Inst Informat Technol, Elect & Telecommun Engn, Pune, Maharashtra, India
关键词
Crop diseases; plant disease detection; hyperparameters; deep learning; convolutional neural network; CLASSIFICATION; AGRICULTURE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Agriculture has a dominant role in the world's economy. However, losses due to crop diseases and pests significantly affect the contribution made by the agricultural sector. Plant diseases and pests recognized at an early stage can help limit the economic losses in agriculture production around the world. In this paper, a comprehensive multilayer convolutional neural network (CMCNN) is developed for plant disease detection that can analyze the visible symptoms on a variety of leaf images like, laboratory images with a plain background, complex images with real field conditions and images of individual disease symptoms or spots. The model performance is evaluated on three public datasets -Plant Village repository having images of the whole leaf with plain background, Plant Village repository with complex background and Digipathos repository with images of lone lesions and spots. Hyperparameters like learning rate, dropout probability, and optimizer are fine-tuned such that the model is capable of classifying various types of input leaf images. The overall classification accuracy of the model in handling laboratory images is 99.85%, real field condition images is 98.16% and for images with individual disease symptoms is 99.6% The proposed design is also compared with the popular CNN architectures like GoogleNet, VGG16, VGG19 and ResNet50. The experimental results indicate that the suggested generic model has higher robustness in handling various types of leaf images and has better classification capability for plant disease detection. The obtained results suggest the favorable use of the proposed model in a decision support system to identify diseases in several plant species for a large range of leaf images.
引用
收藏
页码:204 / 211
页数:8
相关论文
共 50 条
  • [41] Malicious URL Detection Based on Improved Multilayer Recurrent Convolutional Neural Network Model
    Chen, Zuguo
    Liu, Yanglong
    Chen, Chaoyang
    Lu, Ming
    Zhang, Xuzhuo
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [42] Banana Plant Disease Classification Using Hybrid Convolutional Neural Network
    Narayanan, K. Lakshmi
    Krishnan, R. Santhana
    Robinson, Y. Harold
    Julie, E. Golden
    Vimal, S.
    Saravanan, V.
    Kaliappan, M.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [43] Vision transformer meets convolutional neural network for plant disease classification
    Thakur, Poornima Singh
    Chaturvedi, Shubhangi
    Khanna, Pritee
    Sheorey, Tanuja
    Ojha, Aparajita
    ECOLOGICAL INFORMATICS, 2023, 77
  • [44] Paddy Plant Disease Classification and Prediction Using Convolutional Neural Network
    Sagarika, G. K.
    Prasad, Krishna S. J.
    Kumar, Mohana S.
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 208 - 214
  • [45] Plant Disease Identification and Classification Using Convolutional Neural Network and SVM
    Kibriya, Hareem
    Abdullah, Iram
    Nasrullah, Amber
    2021 INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT 2021), 2021, : 264 - 268
  • [46] Intelligent plant disease diagnosis using convolutional neural network: a review
    Joseph, Diana Susan
    Pawar, Pranav M.
    Pramanik, Rahul
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (14) : 21415 - 21481
  • [47] Intelligent plant disease diagnosis using convolutional neural network: a review
    Diana Susan Joseph
    Pranav M Pawar
    Rahul Pramanik
    Multimedia Tools and Applications, 2023, 82 : 21415 - 21481
  • [48] SDCN: A Species-Disease Hybrid Convolutional Neural Network for Plant Disease Recognition
    Yang, Yiqi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 769 - 780
  • [49] Advancements in rice disease detection through convolutional neural networks: A comprehensive review
    Gulmez, Burak
    HELIYON, 2024, 10 (12)
  • [50] Detection of plant leaf diseases using deep convolutional neural network models
    Singla, Puja
    Kalavakonda, Vijaya
    Senthil, Ramalingam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (24) : 64533 - 64549