Intelligent plant disease diagnosis using convolutional neural network: a review

被引:15
|
作者
Joseph, Diana Susan [1 ]
Pawar, Pranav M. [1 ]
Pramanik, Rahul [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dubai Campus, Dubai, U Arab Emirates
关键词
Deep learning; Convolutional neural networks; Plant disease classification and identification; Leaf images; IMAGE-PROCESSING TECHNIQUES; DATA AUGMENTATION; DEEP; IDENTIFICATION; CLASSIFICATION; RECOGNITION; CNN; SEGMENTATION; SYSTEM;
D O I
10.1007/s11042-022-14004-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent times use of different technologies for intelligent crop production is growing. To increase the production of crops, diagnosing a plant disease is very important. Plant diseases can be identified using various techniques like image processing, machine learning, deep learning, etc. Among these techniques deep learning, especially deep learning using convolutional neural networks (CNN) has proved to be more efficient in recent years compared to other methods. This manuscript focuses mainly on the diseases affecting on eleven (11) different plants and how the diseases can be identified from plant leaf images using CNN based deep learning models. This review can help the researchers to get a brief overview of how state-of-the-art CNN models can be used for disease diagnosis in plants, and an overview of the state-of-the-art studies that have used visualization techniques to identify the disease spots for better diagnosis. The review also summarises the studies that have used hyperspectral images for plant disease diagnosis and various data sources used by different studies. The challenges that currently exist while developing a plant disease diagnostic system and the shortcomings and open areas for research have also been discussed in this manuscript.
引用
收藏
页码:21415 / 21481
页数:67
相关论文
共 50 条
  • [1] Intelligent plant disease diagnosis using convolutional neural network: a review
    Diana Susan Joseph
    Pranav M Pawar
    Rahul Pramanik
    Multimedia Tools and Applications, 2023, 82 : 21415 - 21481
  • [2] Plant disease prediction using convolutional neural network
    Hema, M. S.
    Sharma, Niteesha
    Sowjanya, Y.
    Santoshini, Ch
    Durga, R. Sri
    Akhila, V
    EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2021, 9 (02) : 283 - 293
  • [3] An EEMD and convolutional neural network based fault diagnosis method in intelligent power plant
    Jin, Hongwei
    Wang, Huanming
    Tian, Feng
    Zhao, Chunhui
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 5215 - 5220
  • [4] Plant Disease Detection Using Sequential Convolutional Neural Network
    Tripathi, Anshul
    Chourasia, Uday
    Dixit, Priyanka
    Chang, Victor
    INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES, 2022, 13 (01)
  • [5] Plant Disease Identification Using Shallow Convolutional Neural Network
    Hassan, S. K. Mahmudul
    Jasinski, Michal
    Leonowicz, Zbigniew
    Jasinska, Elzbieta
    Maji, Arnab Kumar
    AGRONOMY-BASEL, 2021, 11 (12):
  • [6] Plant Disease Detection Using Deep Convolutional Neural Network
    Pandian, J. Arun
    Kumar, V. Dhilip
    Geman, Oana
    Hnatiuc, Mihaela
    Arif, Muhammad
    Kanchanadevi, K.
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [7] Plant Disease Identification Using a Novel Convolutional Neural Network
    Hassan, Sk Mahmudul
    Maji, Arnab Kumar
    IEEE ACCESS, 2022, 10 : 5390 - 5401
  • [8] Thorax Disease Diagnosis Using Deep Convolutional Neural Network
    Chen, Jie
    Qi, Xianbiao
    Tervonen, Osmo
    Silven, Olli
    Zhao, Guoying
    Pietikainen, Matti
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 2287 - 2290
  • [9] Intelligent Fault Diagnosis for Rotary Machinery Using Transferable Convolutional Neural Network
    Chen, Zhuyun
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 339 - 349
  • [10] ECNN: Intelligent Fault Diagnosis Method Using Efficient Convolutional Neural Network
    Zhang, Chao
    Huang, Qixuan
    Zhang, Chaoyi
    Yang, Ke
    Cheng, Liye
    Li, Zhan
    ACTUATORS, 2022, 11 (10)