THE MAXIMUM VOLUME OF HYPERBOLIC POLYHEDRA

被引:4
|
作者
Belletti, Giulio [1 ]
机构
[1] Heidelberg Univ, Math Inst, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
CONVEX POLYHEDRA; ANGLES;
D O I
10.1090/tran/8215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the supremum of the volume of hyperbolic polyhedra with some fixed combinatorics and with vertices of any kind (real, ideal, or hyperideal). We find that the supremum is always equal to the volume of the rectification of the 1-skeleton. The theorem is proved by applying a sort of volume-increasing flow to any hyperbolic polyhedron. Singularities may arise in the flow because some strata of the polyhedron may degenerate to lower-dimensional objects; when this occurs, we need to study carefully the combinatorics of the resulting polyhedron and continue with the flow, until eventually we get a rectified polyhedron.
引用
收藏
页码:1125 / 1153
页数:29
相关论文
共 50 条
  • [31] Cusped hyperbolic 3-manifolds of complexity 10 having maximum volume
    A. Yu. Vesnin
    V. V. Tarkaev
    E. A. Fominykh
    [J]. Proceedings of the Steklov Institute of Mathematics, 2015, 289 : 227 - 239
  • [32] Discrete conformal maps and ideal hyperbolic polyhedra
    Bobenko, Alexander I.
    Pinkall, Ulrich
    Springborn, Boris A.
    [J]. GEOMETRY & TOPOLOGY, 2015, 19 (04) : 2155 - 2215
  • [33] Convex polyhedra in hyperbolic space and interpolation of functions
    Gladunova, O. P.
    Rodionov, E. D.
    Slavskii, V. V.
    [J]. DOKLADY MATHEMATICS, 2011, 84 (03) : 850 - 853
  • [34] Hyperideal polyhedra in hyperbolic 3-space
    Bao, XL
    Bonahon, F
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (03): : 457 - 491
  • [35] On volumes of hyperbolic right-angled polyhedra
    Alexandrov, S. A.
    Bogachev, N. V.
    Vesnin, A. Yu.
    Egorov, A. A.
    [J]. SBORNIK MATHEMATICS, 2023, 214 (02) : 148 - 165
  • [36] ON A REMARKABLE CLASS OF POLYHEDRA IN COMPLEX HYPERBOLIC SPACE
    MOSTOW, GD
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1980, 86 (01) : 171 - 276
  • [37] Convex polyhedra in hyperbolic space and interpolation of functions
    O. P. Gladunova
    E. D. Rodionov
    V. V. Slavskii
    [J]. Doklady Mathematics, 2011, 84 : 850 - 853
  • [38] Cusped Hyperbolic 3-Manifolds of Complexity 10 Having Maximum Volume
    Vesnin, A. Yu.
    Tarkaev, V. V.
    Fominykh, E. A.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 : S227 - S239
  • [39] SHAPES OF POLYHEDRA, MIXED VOLUMES AND HYPERBOLIC GEOMETRY
    Fillastre, Francois
    Izmestiev, Ivan
    [J]. MATHEMATIKA, 2017, 63 (01) : 124 - 183
  • [40] Convex polyhedra with minimum and maximum names
    Voytekhovsky, Yury L.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : 271 - 273