THE MAXIMUM VOLUME OF HYPERBOLIC POLYHEDRA

被引:4
|
作者
Belletti, Giulio [1 ]
机构
[1] Heidelberg Univ, Math Inst, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
CONVEX POLYHEDRA; ANGLES;
D O I
10.1090/tran/8215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the supremum of the volume of hyperbolic polyhedra with some fixed combinatorics and with vertices of any kind (real, ideal, or hyperideal). We find that the supremum is always equal to the volume of the rectification of the 1-skeleton. The theorem is proved by applying a sort of volume-increasing flow to any hyperbolic polyhedron. Singularities may arise in the flow because some strata of the polyhedron may degenerate to lower-dimensional objects; when this occurs, we need to study carefully the combinatorics of the resulting polyhedron and continue with the flow, until eventually we get a rectified polyhedron.
引用
收藏
页码:1125 / 1153
页数:29
相关论文
共 50 条
  • [21] Andreev's Theorem on hyperbolic polyhedra
    Roeder, Roland K. W.
    Hubbard, John H.
    Dunbar, William D.
    [J]. ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) : 825 - 882
  • [22] About the rigidity of tridimensional hyperbolic polyhedra : Finite volume case, hyperideal case, fuchsian case
    Rousset, M
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2004, 132 (02): : 233 - 261
  • [23] HYPERBOLIC POLYHEDRA WITH A NONDISCRETE AUTOMORPHISM GROUP
    BENAKLI, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (10): : 667 - 669
  • [24] Upper Bounds for Volumes of Generalized Hyperbolic Polyhedra and Hyperbolic Links
    Vesnin, A. Yu.
    Egorov, A. A.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (03) : 534 - 551
  • [25] Ideal Hyperbolic Polyhedra and Discrete Uniformization
    Springborn, Boris
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (01) : 63 - 108
  • [26] Ideal Hyperbolic Polyhedra and Discrete Uniformization
    Boris Springborn
    [J]. Discrete & Computational Geometry, 2020, 64 : 63 - 108
  • [27] Metric Characteristics of Hyperbolic Polygons and Polyhedra
    Kostina E.A.
    Kostina N.N.
    [J]. Journal of Mathematical Sciences, 2022, 263 (3) : 379 - 386
  • [28] On the volume conjecture for polyhedra
    Costantino, Francesco
    Gueritaud, Francois
    van der Veen, Roland
    [J]. GEOMETRIAE DEDICATA, 2015, 179 (01) : 385 - 409
  • [29] On the volume conjecture for polyhedra
    Francesco Costantino
    Francois Guéritaud
    Roland van der Veen
    [J]. Geometriae Dedicata, 2015, 179 : 385 - 409
  • [30] Volume queries in polyhedra
    Iacono, J
    Langerman, S
    [J]. DISCRETE AND COMPUTATIONAL GEOMETRY, 2001, 2098 : 156 - 159