Quantum process identification: a method for characterizing non-markovian quantum dynamics

被引:11
|
作者
Bennink, Ryan S. [1 ]
Lougovski, Pavel [1 ]
机构
[1] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37830 USA
来源
NEW JOURNAL OF PHYSICS | 2019年 / 21卷 / 08期
关键词
system identification; quantum process tomography; device characterization; non-Markovian dynamics; open quantum dynamics; Hamiltonian learning; generalized probabilistic theory;
D O I
10.1088/1367-2630/ab3598
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Established methods for characterizing quantum information processes do not capture non-Markovian (history-dependent) behaviors that occur in real systems. These methods model a quantum process as a fixed map on the state space of a predefined system of interest. Such a map averages over the system's environment, which may retain some effect of its past interactions with the system and thus have a history-dependent influence on the system. Although the theory of non-Markovian quantum dynamics is currently an active area of research, a systematic characterization method based on a general representation of non-Markovian dynamics has been lacking. In this article we present a systematic method for experimentally characterizing the dynamics of open quantum systems. Our method, which we call quantum process identification (QPI), is based on a general theoretical framework which relates the (non-Markovian) evolution of a system over an extended period of time to a time-local (Markovian) process involving the system and an effective environment. In practical terms, QPI uses time-resolved tomographic measurements of a quantum system to construct a dynamical model with as many dynamical variables as are necessary to reproduce the evolution of the system. Through numerical simulations, we demonstrate that QPI can be used to characterize qubit operations with non-Markovian errors arising from realistic dynamics including control drift, coherent leakage, and coherent interaction with material impurities.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Characterizing non-Markovian quantum evolution
    Chruscinski, Dariusz
    [J]. PHYSICA SCRIPTA, 2013, T153
  • [2] Anomalies in non-Markovian quantum dynamics
    Giraldi, Filippo
    Petruccione, Francesco
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2015, 48 (03)
  • [3] Non-Markovian dynamics and quantum jumps
    J. Piilo
    S. Maniscalco
    K. Härkönen
    K. -A. Suominen
    [J]. Optics and Spectroscopy, 2010, 108 : 407 - 411
  • [4] Non-Markovian dynamics and quantum jumps
    Piilo, J.
    Maniscalco, S.
    Harkonen, K.
    Suominen, K. -A.
    [J]. OPTICS AND SPECTROSCOPY, 2010, 108 (03) : 407 - 411
  • [5] General Non-Markovian Quantum Dynamics
    Tarasov, Vasily E.
    [J]. ENTROPY, 2021, 23 (08)
  • [6] Non-Markovian dynamics of quantum discord
    Fanchini, F. F.
    Werlang, T.
    Brasil, C. A.
    Arruda, L. G. E.
    Caldeira, A. O.
    [J]. PHYSICAL REVIEW A, 2010, 81 (05):
  • [7] NON-MARKOVIAN DYNAMICS OF QUANTUM SYSTEMS
    Chruscinski, Dariusz
    Kossakowski, Andrzej
    [J]. QUANTUM BIO-INFORMATICS IV: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2011, 28 : 91 - 99
  • [8] Assessing Non-Markovian Quantum Dynamics
    Wolf, M. M.
    Eisert, J.
    Cubitt, T. S.
    Cirac, J. I.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (15)
  • [9] Non-Markovian Quantum Process Tomography
    White, G. A. L.
    Pollock, F. A.
    Hollenberg, L. C. L.
    Modi, K.
    Hill, C. D.
    [J]. PRX QUANTUM, 2022, 3 (02):
  • [10] An ensemble variational quantum algorithm for non-Markovian quantum dynamics
    Walters, Peter L.
    Tsakanikas, Joachim
    Wang, Fei
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (30) : 20500 - 20510