General Non-Markovian Quantum Dynamics

被引:24
|
作者
Tarasov, Vasily E. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[2] Natl Res Univ, Fac Informat Technol & Appl Math, Moscow Aviat Inst, Moscow 125993, Russia
关键词
fractional dynamics; open quantum systems; non-Markovian quantum dynamics; non-Hamiltonian systems; fractional calculus; general fractional calculus; nonlocality in time; FRACTIONAL CALCULUS; EQUATIONS; SYSTEMS; STATES;
D O I
10.3390/e23081006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general approach to the construction of non-Markovian quantum theory is proposed. Non-Markovian equations for quantum observables and states are suggested by using general fractional calculus. In the proposed approach, the non-locality in time is represented by operator kernels of the Sonin type. A wide class of the exactly solvable models of non-Markovian quantum dynamics is suggested. These models describe open (non-Hamiltonian) quantum systems with general form of nonlocality in time. To describe these systems, the Lindblad equations for quantum observable and states are generalized by taking into account a general form of nonlocality. The non-Markovian quantum dynamics is described by using integro-differential equations with general fractional derivatives and integrals with respect to time. The exact solutions of these equations are derived by using the operational calculus that is proposed by Yu. Luchko for general fractional differential equations. Properties of bi-positivity, complete positivity, dissipativity, and generalized dissipativity in general non-Markovian quantum dynamics are discussed. Examples of a quantum oscillator and two-level quantum system with a general form of nonlocality in time are suggested.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] General Non-Markovian Dynamics of Open Quantum Systems
    Zhang, Wei-Min
    Lo, Ping-Yuan
    Xiong, Heng-Na
    Tu, Matisse Wei-Yuan
    Nori, Franco
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (17)
  • [2] Comment on "General Non-Markovian Dynamics of Open Quantum Systems"
    McCutcheon, Dara P. S.
    Pablo Paz, Juan
    Roncaglia, Augusto J.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (16)
  • [3] Non-Markovian dynamics and quantum jumps
    J. Piilo
    S. Maniscalco
    K. Härkönen
    K. -A. Suominen
    [J]. Optics and Spectroscopy, 2010, 108 : 407 - 411
  • [4] Anomalies in non-Markovian quantum dynamics
    Giraldi, Filippo
    Petruccione, Francesco
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2015, 48 (03)
  • [5] Non-Markovian dynamics and quantum jumps
    Piilo, J.
    Maniscalco, S.
    Harkonen, K.
    Suominen, K. -A.
    [J]. OPTICS AND SPECTROSCOPY, 2010, 108 (03) : 407 - 411
  • [6] Non-Markovian dynamics of quantum discord
    Fanchini, F. F.
    Werlang, T.
    Brasil, C. A.
    Arruda, L. G. E.
    Caldeira, A. O.
    [J]. PHYSICAL REVIEW A, 2010, 81 (05):
  • [7] NON-MARKOVIAN DYNAMICS OF QUANTUM SYSTEMS
    Chruscinski, Dariusz
    Kossakowski, Andrzej
    [J]. QUANTUM BIO-INFORMATICS IV: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2011, 28 : 91 - 99
  • [8] Assessing Non-Markovian Quantum Dynamics
    Wolf, M. M.
    Eisert, J.
    Cubitt, T. S.
    Cirac, J. I.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (15)
  • [9] Comment on "General Non-Markovian Dynamics of Open Quantum Systems" Reply
    Zhang, Wei-Min
    Lo, Ping-Yuan
    Xiong, Heng-Na
    Tu, Matisse Wei-Yuan
    Nori, Franco
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (16)
  • [10] Machine Learning Non-Markovian Quantum Dynamics
    Luchnikov, I. A.
    Vintskevich, S. V.
    Grigoriev, D. A.
    Filippov, S. N.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (14)