Non-Markovian Quantum Process Tomography

被引:31
|
作者
White, G. A. L. [1 ]
Pollock, F. A. [2 ]
Hollenberg, L. C. L. [1 ]
Modi, K. [2 ]
Hill, C. D. [1 ,3 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[2] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[3] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
来源
PRX QUANTUM | 2022年 / 3卷 / 02期
基金
澳大利亚研究理事会;
关键词
PROJECTION;
D O I
10.1103/PRXQuantum.3.020344
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Characterization protocols have so far played a central role in the development of noisy intermediate-scale quantum (NISQ) computers capable of impressive quantum feats. This trajectory is expected to continue in building the next generation of devices-ones that can surpass classical computers for particular tasks-but progress in characterization must keep up with the complexities of intricate device noise. A missing piece in the zoo of characterization procedures is tomography, which can completely describe non-Markovian dynamics over a given time frame. Here, we formally introduce a generalization of quantum process tomography, which we call process tensor tomography. We detail the experimental requirements, construct the necessary postprocessing algorithms for maximum-likelihood estimation, outline the best-practice aspects for accurate results, and make the procedure efficient for low-memory processes. The characterization is a pathway to diagnostics and informed control of correlated noise. As an example application of the hardware-agnostic technique, we show how its predictive control can be used to substantially improve multitime circuit fidelities on superconducting quantum devices. Our methods could form the core for carefully developed software that may help hardware consistently pass the fault-tolerant noise threshold.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Non-Markovian quantum gate set tomography
    Li, Ze-Tong
    Zheng, Cong-Cong
    Meng, Fan-Xu
    Zeng, Han
    Luan, Tian
    Zhang, Zai-Chen
    Yu, Xu-Tao
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03):
  • [2] When Is a Non-Markovian Quantum Process Classical?
    Milz, Simon
    Egloff, Dario
    Taranto, Philip
    Theurer, Thomas
    Plenio, Martin B.
    Smirne, Andrea
    Huelga, Susana F.
    [J]. PHYSICAL REVIEW X, 2020, 10 (04):
  • [3] Experimental characterization of a non-Markovian quantum process
    Goswami, K.
    Giarmatzi, C.
    Monterola, C.
    Shrapnel, S.
    Romero, J.
    Costa, F.
    [J]. PHYSICAL REVIEW A, 2021, 104 (02)
  • [4] Markovian and Non-Markovian Quantum Measurements
    Jennifer R. Glick
    Christoph Adami
    [J]. Foundations of Physics, 2020, 50 : 1008 - 1055
  • [5] Markovian and Non-Markovian Quantum Measurements
    Glick, Jennifer R.
    Adami, Christoph
    [J]. FOUNDATIONS OF PHYSICS, 2020, 50 (09) : 1008 - 1055
  • [6] Markovian Embeddings of Non-Markovian Quantum Systems: Coupled Stochastic and Quantum Master Equations for Non-Markovian Quantum Systems
    Nurdin, Hendra I.
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 5939 - 5944
  • [7] Quantum process identification: a method for characterizing non-markovian quantum dynamics
    Bennink, Ryan S.
    Lougovski, Pavel
    [J]. NEW JOURNAL OF PHYSICS, 2019, 21 (08):
  • [8] Non-Markovian quantum jumps
    Piilo, Jyrki
    Maniscalco, Sabrina
    Harkonen, Kari
    Suominen, Kalle-Antti
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (18)
  • [9] ON NON-MARKOVIAN QUANTUM EVOLUTION
    Chruscinski, Dariusz
    Kossakowski, Andrzej
    [J]. QUANTUM BIO-INFORMATICS V, 2013, 30 : 117 - 125
  • [10] Non-Markovian Quantum Thermometry
    Zhang, Ning
    Chen, Chong
    Bai, Si-Yuan
    Wu, Wei
    An, Jun-Hong
    [J]. PHYSICAL REVIEW APPLIED, 2022, 17 (03)