Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

被引:50
|
作者
Fu, Ying [1 ]
Liang, Zhiyuan [1 ]
You, Shaodi [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Univ Amsterdam, Inst Informat, Comp Vis Res Grp, NL-1000 Amsterdam, Netherlands
基金
中国国家自然科学基金;
关键词
Superresolution; Three-dimensional displays; Correlation; Spatial resolution; Deep learning; Training; Convolution; Bidirectional 3D quasi-recurrent neural network; global correlation along spectra; hyperspectral image super-resolution; structural spatial-spectral correlation; RECONSTRUCTION;
D O I
10.1109/JSTARS.2021.3057936
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
引用
收藏
页码:2674 / 2688
页数:15
相关论文
共 50 条
  • [31] A lightweight network with bidirectional constraints for single image super-resolution
    Chen, Liangliang
    Guo, Lin
    Cheng, Deqiang
    Kou, Qiqi
    Gao, Rui
    OPTIK, 2021, 239
  • [32] Hyperspectral Image Classification Based on Bidirectional Recurrent Neural Network
    Huang, Shuo
    Wang, Xiaofei
    He, Hongchang
    Liu, Yong
    Chen, Runxing
    CONFERENCE PROCEEDINGS OF 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (IEEE ICSPCC 2019), 2019,
  • [33] HYPERSPECTRAL SUPER-RESOLUTION BY UNSUPERVISED CONVOLUTIONAL NEURAL NETWORK AND SURE
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Mura, Mauro Dalla
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 903 - 906
  • [34] Symmetrical Feature Propagation Network for Hyperspectral Image Super-Resolution
    Li, Qiang
    Gong, Maoguo
    Yuan, Yuan
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] Difference Curvature Multidimensional Network for Hyperspectral Image Super-Resolution
    Zhang, Chi
    Zhang, Mingjin
    Li, Yunsong
    Gao, Xinbo
    Qiu, Shi
    REMOTE SENSING, 2021, 13 (17)
  • [36] Hyperspectral image super-resolution based on attention ConvBiLSTM network
    Lu, Xiaochen
    Liu, Xiaohui
    Zhang, Lei
    Jia, Fengde
    Yang, Yunlong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (13) : 5059 - 5074
  • [37] UNSUPERVISED GENERATIVE NETWORK FOR BLIND HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Liu, Zhe
    Han, Xian-Hua
    Sun, Jiande
    Chen, Yen-Wei
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2621 - 2625
  • [38] Hyperspectral image super-resolution with spectral-spatial network
    Jia, Jinrang
    Ji, Luyan
    Zhao, Yongchao
    Geng, Xiurui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (22) : 7806 - 7829
  • [39] IMAGE FUSION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Irmak, Hasan
    Akar, Gozde Bozdagi
    Yuksel, Seniha Esen
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [40] 3D Microbubble Localization with a Convolutional Neural Network for Super-Resolution Ultrasound Imaging
    Piepenbrock, Marion
    Koretskaia, Dania
    Schmitz, Georg
    Dencks, Stefanie
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,