Difference Curvature Multidimensional Network for Hyperspectral Image Super-Resolution

被引:6
|
作者
Zhang, Chi [1 ]
Zhang, Mingjin [1 ]
Li, Yunsong [1 ]
Gao, Xinbo [1 ,2 ]
Qiu, Shi [3 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
[3] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol CAS, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image; super-resolution; deep neural networks; difference curvature; attention; SPARSE; RECONSTRUCTION; FUSION;
D O I
10.3390/rs13173455
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, convolutional-neural-network-based methods have been introduced to the field of hyperspectral image super-resolution following their great success in the field of RGB image super-resolution. However, hyperspectral images appear different from RGB images in that they have high dimensionality, implying a redundancy in the high-dimensional space. Existing approaches struggle in learning the spectral correlation and spatial priors, leading to inferior performance. In this paper, we present a difference curvature multidimensional network for hyperspectral image super-resolution that exploits the spectral correlation to help improve the spatial resolution. Specifically, we introduce a multidimensional enhanced convolution (MEC) unit into the network to learn the spectral correlation through a self-attention mechanism. Meanwhile, it reduces the redundancy in the spectral dimension via a bottleneck projection to condense useful spectral features and reduce computations. To remove the unrelated information in high-dimensional space and extract the delicate texture features of a hyperspectral image, we design an additional difference curvature branch (DCB), which works as an edge indicator to fully preserve the texture information and eliminate the unwanted noise. Experiments on three publicly available datasets demonstrate that the proposed method can recover sharper images with minimal spectral distortion compared to state-of-the-art methods. PSNR/SAM is 0.3-0.5 dB/0.2-0.4 better than the second best methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Difference Value Network for Image Super-Resolution
    Jiang, Zetao
    Pi, Kui
    Huang, Yongsong
    Qian, Yi
    Zhang, Shaoqin
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1070 - 1074
  • [2] StructureColor Preserving Network for Hyperspectral Image Super-Resolution
    Pan, Bin
    Qu, Qiaoying
    Xu, Xia
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Hyperspectral Image Super-Resolution via Intrafusion Network
    Hu, Jing
    Jia, Xiuping
    Li, Yunsong
    He, Gang
    Zhao, Minghua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10): : 7459 - 7471
  • [4] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1233 - 1244
  • [5] Unsupervised Across Domain Consistency- Difference Network for Hyperspectral Image Super-Resolution
    Guo, Zhiling
    Xin, Jingwei
    Wang, Nannan
    Li, Jie
    Wang, Xiaoyu
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] Hyperspectral Image Super-Resolution with RGB Image Super-Resolution as an Auxiliary Task
    Li, Ke
    Dai, Dengxin
    van Gool, Luc
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 4039 - 4048
  • [7] Diffused Convolutional Neural Network for Hyperspectral Image Super-Resolution
    Jia, Sen
    Zhu, Shuangzhao
    Wang, Zhihao
    Xu, Meng
    Wang, Weixi
    Guo, Yujuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA CONVOLUTIONAL NEURAL NETWORK
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Wan, Shuai
    Hou, Junhui
    Du, Qian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4297 - 4301
  • [9] Symmetrical Feature Propagation Network for Hyperspectral Image Super-Resolution
    Li, Qiang
    Gong, Maoguo
    Yuan, Yuan
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Hyperspectral image super-resolution based on attention ConvBiLSTM network
    Lu, Xiaochen
    Liu, Xiaohui
    Zhang, Lei
    Jia, Fengde
    Yang, Yunlong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (13) : 5059 - 5074