Hyperspectral Image Super-Resolution via Intrafusion Network

被引:54
|
作者
Hu, Jing [1 ]
Jia, Xiuping [2 ]
Li, Yunsong [3 ]
He, Gang [3 ]
Zhao, Minghua [1 ]
机构
[1] Xian Univ Technol, Sch Comp Sci & Engn, Shaanxi Key Lab Network Comp & Secur Technol, Xian 710048, Peoples R China
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[3] Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Spatial resolution; Convolution; Image reconstruction; Hyperspectral imaging; Convolutional neural networks; Hyperspectral image (HIS); intrafusion; spectral difference; super-resolution (SR); NONNEGATIVE MATRIX FACTORIZATION; RESOLUTION;
D O I
10.1109/TGRS.2020.2982940
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article presents an intrafusion network (IFN) for hyperspectral image (HSI) super-resolution (SR). Given that the HSI is a 3-D data cube with both the spatial information and the spectral information, the key challenge to construct HSI SR is how to efficiently exploit the spectral information among consecutive low-resolution (LR) bands, besides the spatial information. The proposed IFN consists of three modules, including the spectral difference module, the parallel convolution module, and the intrafusion module, which directly utilizes both the spatial information and the spectral information for reconstructing the high-resolution HSI. Different from most of the existed methods that tackle the spatial and spectral information separately, the proposed spatialspectral utilization is achieved in one integrated network, which opens up a new way for HSI SR. Meanwhile, applications of this three modules strategy (first spectral difference, then parallel convolution, and finally, intrafusion) on both the conventional convolutional neural network and the residual network with deeper depth have shown the generalization capacity of this proposal. Experimental results and data analysis demonstrate the effectiveness of the proposed method using three hyperspectral data sets.
引用
下载
收藏
页码:7459 / 7471
页数:13
相关论文
共 50 条
  • [1] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA CONVOLUTIONAL NEURAL NETWORK
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Wan, Shuai
    Hou, Junhui
    Du, Qian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4297 - 4301
  • [2] StructureColor Preserving Network for Hyperspectral Image Super-Resolution
    Pan, Bin
    Qu, Qiaoying
    Xu, Xia
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1233 - 1244
  • [4] Hyperspectral image super-resolution via double-flow pretreatment network
    Li, Ning
    Ma, Rubin
    Jiao, Jichao
    Qi, Wangjing
    Li, Yuxuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 28027 - 28038
  • [5] Hyperspectral image super-resolution via double-flow pretreatment network
    Ning Li
    Rubin Ma
    Jichao Jiao
    Wangjing Qi
    Yuxuan Li
    Multimedia Tools and Applications, 2024, 83 : 28027 - 28038
  • [6] Hyperspectral Image Super-Resolution via Deep Image Gradient Guided Residual Dense Network
    Zhao, Minghua
    Ning, Jiawei
    Hu, Jing
    Li, Tingting
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [7] Hyperspectral Image Super-Resolution with RGB Image Super-Resolution as an Auxiliary Task
    Li, Ke
    Dai, Dengxin
    van Gool, Luc
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 4039 - 4048
  • [8] Image super-resolution via dynamic network
    Tian, Chunwei
    Zhang, Xuanyu
    Zhang, Qi
    Yang, Mingming
    Ju, Zhaojie
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (04) : 837 - 849
  • [9] Diffused Convolutional Neural Network for Hyperspectral Image Super-Resolution
    Jia, Sen
    Zhu, Shuangzhao
    Wang, Zhihao
    Xu, Meng
    Wang, Weixi
    Guo, Yujuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] Symmetrical Feature Propagation Network for Hyperspectral Image Super-Resolution
    Li, Qiang
    Gong, Maoguo
    Yuan, Yuan
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60