Automatic Detection of Stationary Fronts around Japan Using a Deep Convolutional Neural Network

被引:4
|
作者
Matsuoka, Daisuke [1 ,2 ]
Sugimoto, Shiori [1 ]
Nakagawa, Yujin [1 ]
Kawahara, Shintaro [1 ]
Araki, Fumiaki [1 ]
Onoue, Yosuke [3 ]
Iiyama, Masaaki [4 ]
Koyamada, Koji [4 ]
机构
[1] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Yokohama, Kanagawa, Japan
[2] Japan Sci & Technol Agcy JST, Saitama, Japan
[3] Nihon Univ, Tokyo, Japan
[4] Kyoto Univ, Kyoto, Japan
来源
SOLA | 2019年 / 15卷
基金
日本科学技术振兴机构;
关键词
D O I
10.2151/sola.2019-028
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this study, a stationary front is automatically detected from weather data using a U-Net deep convolutional neural network. The U-Net trained the transformation process from single/multiple physical quantities of weather data to detect stationary fronts using a 10-year data set As a result of applying the trained U-Net to a 1-year untrained data set, the proposed approach succeeded in detecting the approximate shape of seasonal fronts with the exception of typhoons. In addition, the wind velocity (zonal and meridional components), wind direction, horizontal temperature gradient at 1000 hPa, relative humidity at 925 hPa, and water vapor at 850 hPa yielded high detection performance. Because the shape of the front extracted from each physical quantity is occasionally different, it is important to comprehensively analyze the results to make a final determination.
引用
收藏
页码:154 / 159
页数:6
相关论文
共 50 条
  • [41] Automatic action unit detection in infants using convolutional neural network
    Hammal, Zakia
    Chu, Wen-Sheng
    Cohn, Jeffrey F.
    Heike, Carrie
    Speltz, Matthew L.
    [J]. 2017 7th International Conference on Affective Computing and Intelligent Interaction, ACII 2017, 2017, 2018-January : 216 - 221
  • [42] Automatic Detection of Atrial Fibrillation Using Electrocardiomatrix and Convolutional Neural Network
    Salinas-Martinez, Ricardo
    de Bie, Johan
    Marzocchi, Nicoletta
    Sandberg, Frida
    [J]. 2020 COMPUTING IN CARDIOLOGY, 2020,
  • [43] In-vehicle network intrusion detection using deep convolutional neural network
    Song, Hyun Min
    Woo, Jiyoung
    Kim, Huy Kang
    [J]. VEHICULAR COMMUNICATIONS, 2020, 21
  • [44] Automatic Detection of Welding Defects using Deep Neural Network
    Hou, Wenhui
    Wei, Ye
    Guo, Jie
    Jin, Yi
    Zhu, Chang'an
    [J]. 10TH INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING, 2018, 933
  • [45] Automatic Detection of Ballast Unevenness Using Deep Neural Network
    Bojarczak, Piotr
    Lesiak, Piotr
    Nowakowski, Waldemar
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [46] Automatic Segmentation of Achilles Tendon Tissues Using Deep Convolutional Neural Network
    Alzyadat, Tariq
    Praet, Stephan
    Chetty, Girija
    Goecke, Roland
    Hughes, David
    Kumar, Dinesh
    Welvaert, Marijke
    Vlahovich, Nicole
    Waddington, Gordon
    [J]. MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2020, 2020, 12436 : 444 - 454
  • [47] Automatic Delineation Strategy for Brain Metastases Using Deep Convolutional Neural Network
    Liu, Y.
    Stojadinovic, S.
    Hrycushko, B.
    Wardak, Z.
    Lu, W.
    Yan, Y.
    Jiang, S.
    Zhen, X.
    Timmerman, R.
    Abdulrahman, R.
    Nedzi, L.
    Gu, X.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3009 - 3010
  • [48] Automatic method for classification of groundnut diseases using deep convolutional neural network
    Vaishnnave, M. P.
    Devi, K. Suganya
    Ganeshkumar, P.
    [J]. SOFT COMPUTING, 2020, 24 (21) : 16347 - 16360
  • [49] Automatic Identification of Depression Using Facial Images with Deep Convolutional Neural Network
    Kong, Xinru
    Yao, Yan
    Wang, Cuiying
    Wang, Yuangeng
    Teng, Jing
    Qi, Xianghua
    [J]. MEDICAL SCIENCE MONITOR, 2022, 28
  • [50] Automatic Age Classification of Prospective Voters Using Deep Convolutional Neural Network
    Adeniyi, Ahmed A.
    Adeshina, Steve A.
    [J]. 2019 15TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO), 2019,