Automatic Detection of Stationary Fronts around Japan Using a Deep Convolutional Neural Network

被引:4
|
作者
Matsuoka, Daisuke [1 ,2 ]
Sugimoto, Shiori [1 ]
Nakagawa, Yujin [1 ]
Kawahara, Shintaro [1 ]
Araki, Fumiaki [1 ]
Onoue, Yosuke [3 ]
Iiyama, Masaaki [4 ]
Koyamada, Koji [4 ]
机构
[1] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Yokohama, Kanagawa, Japan
[2] Japan Sci & Technol Agcy JST, Saitama, Japan
[3] Nihon Univ, Tokyo, Japan
[4] Kyoto Univ, Kyoto, Japan
来源
SOLA | 2019年 / 15卷
基金
日本科学技术振兴机构;
关键词
D O I
10.2151/sola.2019-028
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this study, a stationary front is automatically detected from weather data using a U-Net deep convolutional neural network. The U-Net trained the transformation process from single/multiple physical quantities of weather data to detect stationary fronts using a 10-year data set As a result of applying the trained U-Net to a 1-year untrained data set, the proposed approach succeeded in detecting the approximate shape of seasonal fronts with the exception of typhoons. In addition, the wind velocity (zonal and meridional components), wind direction, horizontal temperature gradient at 1000 hPa, relative humidity at 925 hPa, and water vapor at 850 hPa yielded high detection performance. Because the shape of the front extracted from each physical quantity is occasionally different, it is important to comprehensively analyze the results to make a final determination.
引用
收藏
页码:154 / 159
页数:6
相关论文
共 50 条
  • [31] Transmission line detection using deep convolutional neural network
    Dong, Jingjing
    Chen, Wei
    Xu, Chen
    [J]. PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 977 - 980
  • [32] Fabric Defect Detection Using Deep Convolutional Neural Network
    Maheshwari S. Biradar
    B. G. Shiparamatti
    P. M. Patil
    [J]. Optical Memory and Neural Networks, 2021, 30 : 250 - 256
  • [33] Automatic detection of crohn disease in wireless capsule endoscopic images using a deep convolutional neural network
    Marin-Santos, Diego
    Contreras-Fernandez, Juan A.
    Perez-Borrero, Isaac
    Pallares-Manrique, Hector
    Gegundez-Arias, Manuel E.
    [J]. APPLIED INTELLIGENCE, 2023, 53 (10) : 12632 - 12646
  • [34] An automatic defect detection method for TO56 semiconductor laser using deep convolutional neural network
    Zhang, Hang
    Li, Rong
    Zou, Dexiang
    Liu, Jian
    Chen, Ning
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 179
  • [35] The Impact of Using Data Augmentation Techniques for Automatic Detection of Arrhythmia With a Deep Convolutional Neural Network Model
    Degachi, Oumayma
    Ouni, Kais
    [J]. 2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES, ICASET 2024, 2024,
  • [36] Automatic detection of crohn disease in wireless capsule endoscopic images using a deep convolutional neural network
    Diego Marin-Santos
    Juan A. Contreras-Fernandez
    Isaac Perez-Borrero
    Hector Pallares-Manrique
    Manuel E. Gegundez-Arias
    [J]. Applied Intelligence, 2023, 53 : 12632 - 12646
  • [37] Automatic detection of microaneurysms using DeTraC deep convolutional neural network classifier with woodpecker mating algorithm
    Sherine, A. P.
    Wilfred Franklin, S.
    [J]. IMAGING SCIENCE JOURNAL, 2024, : 1081 - 1092
  • [38] Automatic Action Unit Detection in Infants Using Convolutional Neural Network
    Hammal, Zakia
    Chu, Wen-Sheng
    Cohn, Jeffrey F.
    Heike, Carrie
    Speltz, Matthew L.
    [J]. 2017 SEVENTH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2017, : 216 - 221
  • [39] Automatic Detection of Brick Pavement Defects Using Convolutional Neural Network
    Ji, Ankang
    Xue, Xiaolong
    Dou, Yudan
    Wang, Yuna
    [J]. ICCREM 2021: CHALLENGES OF THE CONSTRUCTION INDUSTRY UNDER THE PANDEMIC, 2021, : 255 - 263
  • [40] Automatic Detection of Infantile Hemangioma using Convolutional Neural Network Approach
    Horvath, Balazs
    Neghina, Catalina
    Griparis, Andreea
    Sultana, Alina
    [J]. 2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,