Automatic Detection of Stationary Fronts around Japan Using a Deep Convolutional Neural Network

被引:4
|
作者
Matsuoka, Daisuke [1 ,2 ]
Sugimoto, Shiori [1 ]
Nakagawa, Yujin [1 ]
Kawahara, Shintaro [1 ]
Araki, Fumiaki [1 ]
Onoue, Yosuke [3 ]
Iiyama, Masaaki [4 ]
Koyamada, Koji [4 ]
机构
[1] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Yokohama, Kanagawa, Japan
[2] Japan Sci & Technol Agcy JST, Saitama, Japan
[3] Nihon Univ, Tokyo, Japan
[4] Kyoto Univ, Kyoto, Japan
来源
SOLA | 2019年 / 15卷
基金
日本科学技术振兴机构;
关键词
D O I
10.2151/sola.2019-028
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this study, a stationary front is automatically detected from weather data using a U-Net deep convolutional neural network. The U-Net trained the transformation process from single/multiple physical quantities of weather data to detect stationary fronts using a 10-year data set As a result of applying the trained U-Net to a 1-year untrained data set, the proposed approach succeeded in detecting the approximate shape of seasonal fronts with the exception of typhoons. In addition, the wind velocity (zonal and meridional components), wind direction, horizontal temperature gradient at 1000 hPa, relative humidity at 925 hPa, and water vapor at 850 hPa yielded high detection performance. Because the shape of the front extracted from each physical quantity is occasionally different, it is important to comprehensively analyze the results to make a final determination.
引用
收藏
页码:154 / 159
页数:6
相关论文
共 50 条
  • [1] Automatic fabric defect detection using a deep convolutional neural network
    Jing, Jun-Feng
    Ma, Hao
    Zhang, Huan-Huan
    [J]. COLORATION TECHNOLOGY, 2019, 135 (03) : 213 - 223
  • [2] Automatic Cataract Detection And Grading Using Deep Convolutional Neural Network
    Zhang, Linglin
    Li, Jianqiang
    Zhang, Li
    Han, He
    Liu, Bo
    Yang, Jijiang
    Wang, Qing
    [J]. PROCEEDINGS OF THE 2017 IEEE 14TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL (ICNSC 2017), 2017, : 60 - 65
  • [3] Automatic mandibular canal detection using a deep convolutional neural network
    Gloria Hyunjung Kwak
    Eun-Jung Kwak
    Jae Min Song
    Hae Ryoun Park
    Yun-Hoa Jung
    Bong-Hae Cho
    Pan Hui
    Jae Joon Hwang
    [J]. Scientific Reports, 10
  • [4] Automatic mandibular canal detection using a deep convolutional neural network
    Kwak, Gloria Hyunjung
    Kwak, Eun-Jung
    Song, Jae Min
    Park, Hae Ryoun
    Jung, Yun-Hoa
    Cho, Bong-Hae
    Hui, Pan
    Hwang, Jae Joon
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Automatic defect detection for fabric printing using a deep convolutional neural network
    Chakraborty, Samit
    Moore, Marguerite
    Parrillo-Chapman, Lisa
    [J]. INTERNATIONAL JOURNAL OF FASHION DESIGN TECHNOLOGY AND EDUCATION, 2022, 15 (02) : 142 - 157
  • [6] Automatic Detection of Tulip Breaking Virus (TBV) Using a Deep Convolutional Neural Network
    Polder, Gerrit
    van de Westeringh, Nick
    Kool, Janne
    Khan, Haris Ahmad
    Kootstra, Gert
    Nieuwenhuizen, Ard
    [J]. IFAC PAPERSONLINE, 2019, 52 (30): : 12 - 17
  • [7] Detection of Potholes Using a Deep Convolutional Neural Network
    Suong, Lim Kuoy
    Jangwoo, Kwon
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (09) : 1244 - 1257
  • [8] Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network
    Chen, Junwen
    Liu, Zhigang
    Wang, Hongrui
    Nunez, Alfredo
    Han, Zhiwei
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (02) : 257 - 269
  • [9] Study on automatic detection and classification of breast nodule using deep convolutional neural network system
    Wang, Feiqian
    Liu, Xiaotong
    Yuan, Na
    Qian, Buyue
    Ruan, Litao
    Yin, Changchang
    Jin, Ciping
    [J]. JOURNAL OF THORACIC DISEASE, 2020, 12 (09) : 4690 - 4701
  • [10] AUTOMATIC DETECTION OF PNEUMONIA USING CONCATENATED CONVOLUTIONAL NEURAL NETWORK
    Al-Taani, Ahmad T.
    Al-Dagamseh, Ishraq T.
    [J]. JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2023, 9 (02): : 118 - 136