Stopping criteria and mutation strategy based on the theoretical analysis for a class of evolutionary algorithms

被引:0
|
作者
Zhai Jingang [1 ]
Yang Zhenguang
Xin Jie
Li Hongbo
机构
[1] Ludong Univ, Sch Math & Informat, Yantai 264025, Peoples R China
[2] Ludong Univ, Sch Math & Informat, Yantai 264025, Peoples R China
[3] Ludong Univ, Sch Math & Informat, Yantai 264025, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the convergence properties for a class of evolutionary algorithms in continuous space are studied. Under the certain conditions, the convergence theorem is presented with the selection and mutation operators. Based on the convergence analysis, we discuss the stopping criteria. Furthermore, a new mutation strategy is constructed on the foundation of the principle of simulated annealing-like strategy. The numerical simulations are offered to illustrate the effectiveness of the strategy.
引用
收藏
页码:1038 / 1041
页数:4
相关论文
共 50 条
  • [41] Runtime Analysis for Permutation-based Evolutionary Algorithms
    Doerr, Benjamin
    Ghannane, Yassine
    Ibn Brahim, Marouane
    ALGORITHMICA, 2024, 86 (01) : 90 - 129
  • [42] Runtime Analysis of Evolutionary Programming Based on Cauchy Mutation
    Huang, Han
    Hao, Zhifeng
    Cai, Zhaoquan
    Zhu, Yifan
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, 2010, 6466 : 222 - +
  • [43] Runtime Analysis of Population-based Evolutionary Algorithms
    Lehre, Per Kristian
    Oliveto, Pietro S.
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 1271 - 1300
  • [44] Runtime Analysis of Population-based Evolutionary Algorithms
    Lehre, Per Kristian
    Oliveto, Pietro S.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 1398 - 1426
  • [45] Brazilian Energy Auctions Analysis Based on Evolutionary Algorithms
    Castro, C. M. B.
    Marcato, A. L. M.
    Silva, I. C. S., Jr.
    Dias, B. H.
    Silva, G. E., Jr.
    Oliveira, E. J.
    2009 IEEE BUCHAREST POWERTECH, VOLS 1-5, 2009, : 2705 - +
  • [46] Runtime Analysis of Population-based Evolutionary Algorithms
    Lehre, Per Kristian
    Oliveto, Pietro S.
    PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 435 - 462
  • [47] A Pre-Selection Based on One-Class Classification in Evolutionary Algorithms
    Zhang J.-Y.
    Zhou A.-M.
    Zhang G.-X.
    Zhou, Ai-Min (amzhou@cs.ecnu.edu.cn), 1600, Science Press (43): : 233 - 249
  • [48] An Autoselection Strategy of Multiobjective Evolutionary Algorithms Based on Performance Indicator and Its Application
    Fan, Qinqin
    Zhang, Yilian
    Li, Ning
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 2422 - 2436
  • [49] Enhancing the Performance of Evolutionary Algorithms: a Novel Maturity-Based Adaptation Strategy
    Guo, Yu
    Chen, Wei-Neng
    Zhang, Jun
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [50] A Collaborative Resource Allocation Strategy for Decomposition-Based Multiobjective Evolutionary Algorithms
    Kang, Qi
    Song, Xinyao
    Zhou, MengChu
    Li, Li
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (12): : 2416 - 2423