Stopping criteria and mutation strategy based on the theoretical analysis for a class of evolutionary algorithms

被引:0
|
作者
Zhai Jingang [1 ]
Yang Zhenguang
Xin Jie
Li Hongbo
机构
[1] Ludong Univ, Sch Math & Informat, Yantai 264025, Peoples R China
[2] Ludong Univ, Sch Math & Informat, Yantai 264025, Peoples R China
[3] Ludong Univ, Sch Math & Informat, Yantai 264025, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the convergence properties for a class of evolutionary algorithms in continuous space are studied. Under the certain conditions, the convergence theorem is presented with the selection and mutation operators. Based on the convergence analysis, we discuss the stopping criteria. Furthermore, a new mutation strategy is constructed on the foundation of the principle of simulated annealing-like strategy. The numerical simulations are offered to illustrate the effectiveness of the strategy.
引用
下载
收藏
页码:1038 / 1041
页数:4
相关论文
共 50 条
  • [21] A gene based adaptive mutation strategy for genetic algorithms
    Uyar, S
    Sariel, S
    Eryigit, G
    GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 271 - 281
  • [22] A Novel Diversity-Based Replacement Strategy for Evolutionary Algorithms
    Segura, Carlos
    Coello Coello, Carlos A.
    Segredo, Eduardo
    Hernandez Aguirre, Arturo
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 3233 - 3246
  • [23] Mixed Mutation Strategy Evolutionary Programming Based on Shapley Value
    Pang, Jinwei
    Dong, Hongbin
    He, Jun
    Feng, Qi
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2805 - 2812
  • [24] A general steady state distribution based stopping criteria for finite length genetic algorithms
    Pendharkar, Parag C.
    Koehler, Gary J.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 176 (03) : 1436 - 1451
  • [25] Multi-criteria Manipulator Trajectory Optimization Based on Evolutionary Algorithms
    Solteiro Pires, E. J.
    de Moura Oliveira, P. B.
    Tenreiro Machado, J. A.
    SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS, 2010, 73 : 87 - +
  • [26] Indicator-Based Evolutionary Level Set Approximation: Mixed Mutation Strategy and Extended Analysis
    Liu, Lai-Yee
    Basto-Fernandes, Vitor
    Yevseyeva, Iryna
    Kok, Joost
    Emmerich, Michael
    NATURAL AND ARTIFICIAL COMPUTATION FOR BIOMEDICINE AND NEUROSCIENCE, PT I, 2017, 10337 : 146 - 159
  • [27] Comments on "Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space - Part I: Basic properties of selection and mutation"
    Gao, Y
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (02): : 341 - 342
  • [28] A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms
    Li, Yuan-Long
    Zhou, Yu-Ren
    Zhan, Zhi-Hui
    Zhang, Jun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (04) : 563 - 576
  • [29] A theoretical study of the stability criteria for hybridized FDTD algorithms for multiscale analysis
    Marrone, M
    Mittra, R
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (08) : 2158 - 2167
  • [30] A non-dominance-based online stopping criterion for multi-objective evolutionary algorithms
    Goel, Tushar
    Stander, Nielen
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (06) : 661 - 684