Stopping criteria and mutation strategy based on the theoretical analysis for a class of evolutionary algorithms

被引:0
|
作者
Zhai Jingang [1 ]
Yang Zhenguang
Xin Jie
Li Hongbo
机构
[1] Ludong Univ, Sch Math & Informat, Yantai 264025, Peoples R China
[2] Ludong Univ, Sch Math & Informat, Yantai 264025, Peoples R China
[3] Ludong Univ, Sch Math & Informat, Yantai 264025, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the convergence properties for a class of evolutionary algorithms in continuous space are studied. Under the certain conditions, the convergence theorem is presented with the selection and mutation operators. Based on the convergence analysis, we discuss the stopping criteria. Furthermore, a new mutation strategy is constructed on the foundation of the principle of simulated annealing-like strategy. The numerical simulations are offered to illustrate the effectiveness of the strategy.
引用
收藏
页码:1038 / 1041
页数:4
相关论文
共 50 条
  • [1] Theoretical analysis of mutation-adaptive evolutionary algorithms
    Agapie, A
    [J]. EVOLUTIONARY COMPUTATION, 2001, 9 (02) : 127 - 146
  • [2] Towards Statistical Convergence Criteria for Mutation-Based Evolutionary Algorithms
    Campelo, Felipe
    [J]. 2015 LATIN AMERICA CONGRESS ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2015,
  • [3] A Theoretical Investigation of Termination Criteria for Evolutionary Algorithms
    Rowe, Jonathan E.
    [J]. EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, EVOCOP 2024, 2024, 14632 : 162 - 176
  • [4] A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms
    Wagner, Tobias
    Trautmann, Heike
    Marti, Luis
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 16 - +
  • [5] CONVERGENCE RATES FOR A CLASS OF EVOLUTIONARY ALGORITHMS WITH ELITIST STRATEGY
    丁立新
    康立山
    [J]. Acta Mathematica Scientia, 2001, (04) : 531 - 540
  • [6] Convergence rates for a class of evolutionary algorithms with elitist strategy
    Ding, LX
    Kang, LS
    [J]. ACTA MATHEMATICA SCIENTIA, 2001, 21 (04) : 531 - 540
  • [7] Stopping criteria in evolutionary algorithms for multi-objective performance optimization of integrated inductors
    Fernandez, Francisco V.
    Esteban-Muller, J.
    Roca, Elisenda
    Castro-Lopez, Rafael
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [8] An Approach to Stopping Criteria for Multi-objective Optimization Evolutionary Algorithms: The MGBM Criterion
    Marti, Luis
    Garcia, Jesus
    Berlanga, Antonio
    Molina, Jose M.
    [J]. 2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 1263 - 1270
  • [9] SDME Quality Measure based Stopping Criteria for Iterative Deblurring Algorithms
    Shah, Mayana
    Dalal, U. D.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (10) : 200 - 209
  • [10] Theoretical analysis of a mutation-based evolutionary algorithm for a tracking problem in the lattice
    Jansen, Thomas
    Schellbach, Ulf
    [J]. GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 841 - 848